Abstract

We present theoretical and experimental results for a novel oscillator that converts continuous light energy into stable and spectrally pure microwave signals. This optoelectronic oscillator can generate ultrastable spectrally pure microwave reference frequencies as high as 75 GHz with a phase noise lower than −140 dBc/Hz at 10 kHz, independent of oscillation frequency.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ogawa, D. Polifko, S. Banba, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
    [CrossRef]
  2. X. S. Yao, L. Maleki, Electron. Lett. 30, 1525 (1994).
    [CrossRef]
  3. K. Noguchi, H. Miyazawa, O. Mitomi, Electron. Lett. 30, 12 (1994).
    [CrossRef]
  4. A. Neyer, E. Voges, IEEE J. Quantum Electron. QE-18, 2009 (1982).
    [CrossRef]
  5. E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, Appl. Phys. Lett. 34, 374 (1979).
    [CrossRef]
  6. A. Neyer, E. Voges, Appl. Phys. Lett. 40, 6 (1982).
    [CrossRef]
  7. C. H. Cox, G. Betts, L. M. Johnson, IEEE Trans. Microwave Theory Tech. 38, 501 (1990).
    [CrossRef]
  8. X. S. Yao, L. Maleki, “Light induced microwave oscillator,” TDA Progress Rep. No. 42–123 (Jet Propulsion Laboratory, Pasadena, Calif., 1995).
  9. A. E. Sigman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 11.
  10. M. F. Lewis, in Proceedings of the 1973 Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 344–347.
    [CrossRef]
  11. R. L. Byer, Science 239, 742 (1988).
    [CrossRef] [PubMed]
  12. L. S. Culter, C. L. Searle, Proc. IEEE 54, 136 (1966).
    [CrossRef]
  13. Hewlett-Packard Company, “Phase noise characterization of microwave oscillators—frequency discriminator method,” product note 11729C-2.

1994 (2)

X. S. Yao, L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

K. Noguchi, H. Miyazawa, O. Mitomi, Electron. Lett. 30, 12 (1994).
[CrossRef]

1992 (1)

H. Ogawa, D. Polifko, S. Banba, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

1990 (1)

C. H. Cox, G. Betts, L. M. Johnson, IEEE Trans. Microwave Theory Tech. 38, 501 (1990).
[CrossRef]

1988 (1)

R. L. Byer, Science 239, 742 (1988).
[CrossRef] [PubMed]

1982 (2)

A. Neyer, E. Voges, Appl. Phys. Lett. 40, 6 (1982).
[CrossRef]

A. Neyer, E. Voges, IEEE J. Quantum Electron. QE-18, 2009 (1982).
[CrossRef]

1979 (1)

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, Appl. Phys. Lett. 34, 374 (1979).
[CrossRef]

1966 (1)

L. S. Culter, C. L. Searle, Proc. IEEE 54, 136 (1966).
[CrossRef]

Allen, S. D.

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, Appl. Phys. Lett. 34, 374 (1979).
[CrossRef]

Banba, S.

H. Ogawa, D. Polifko, S. Banba, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

Betts, G.

C. H. Cox, G. Betts, L. M. Johnson, IEEE Trans. Microwave Theory Tech. 38, 501 (1990).
[CrossRef]

Byer, R. L.

R. L. Byer, Science 239, 742 (1988).
[CrossRef] [PubMed]

Cox, C. H.

C. H. Cox, G. Betts, L. M. Johnson, IEEE Trans. Microwave Theory Tech. 38, 501 (1990).
[CrossRef]

Culter, L. S.

L. S. Culter, C. L. Searle, Proc. IEEE 54, 136 (1966).
[CrossRef]

Garmire, E.

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, Appl. Phys. Lett. 34, 374 (1979).
[CrossRef]

Johnson, L. M.

C. H. Cox, G. Betts, L. M. Johnson, IEEE Trans. Microwave Theory Tech. 38, 501 (1990).
[CrossRef]

Lewis, M. F.

M. F. Lewis, in Proceedings of the 1973 Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 344–347.
[CrossRef]

Maleki, L.

X. S. Yao, L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

X. S. Yao, L. Maleki, “Light induced microwave oscillator,” TDA Progress Rep. No. 42–123 (Jet Propulsion Laboratory, Pasadena, Calif., 1995).

Marburger, J. H.

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, Appl. Phys. Lett. 34, 374 (1979).
[CrossRef]

Mitomi, O.

K. Noguchi, H. Miyazawa, O. Mitomi, Electron. Lett. 30, 12 (1994).
[CrossRef]

Miyazawa, H.

K. Noguchi, H. Miyazawa, O. Mitomi, Electron. Lett. 30, 12 (1994).
[CrossRef]

Neyer, A.

A. Neyer, E. Voges, Appl. Phys. Lett. 40, 6 (1982).
[CrossRef]

A. Neyer, E. Voges, IEEE J. Quantum Electron. QE-18, 2009 (1982).
[CrossRef]

Noguchi, K.

K. Noguchi, H. Miyazawa, O. Mitomi, Electron. Lett. 30, 12 (1994).
[CrossRef]

Ogawa, H.

H. Ogawa, D. Polifko, S. Banba, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

Polifko, D.

H. Ogawa, D. Polifko, S. Banba, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

Searle, C. L.

L. S. Culter, C. L. Searle, Proc. IEEE 54, 136 (1966).
[CrossRef]

Sigman, A. E.

A. E. Sigman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 11.

Voges, E.

A. Neyer, E. Voges, IEEE J. Quantum Electron. QE-18, 2009 (1982).
[CrossRef]

A. Neyer, E. Voges, Appl. Phys. Lett. 40, 6 (1982).
[CrossRef]

Winful, H. G.

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, Appl. Phys. Lett. 34, 374 (1979).
[CrossRef]

Yao, X. S.

X. S. Yao, L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

X. S. Yao, L. Maleki, “Light induced microwave oscillator,” TDA Progress Rep. No. 42–123 (Jet Propulsion Laboratory, Pasadena, Calif., 1995).

Appl. Phys. Lett. (2)

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, Appl. Phys. Lett. 34, 374 (1979).
[CrossRef]

A. Neyer, E. Voges, Appl. Phys. Lett. 40, 6 (1982).
[CrossRef]

Electron. Lett. (2)

X. S. Yao, L. Maleki, Electron. Lett. 30, 1525 (1994).
[CrossRef]

K. Noguchi, H. Miyazawa, O. Mitomi, Electron. Lett. 30, 12 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Neyer, E. Voges, IEEE J. Quantum Electron. QE-18, 2009 (1982).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

H. Ogawa, D. Polifko, S. Banba, IEEE Trans. Microwave Theory Tech. 40, 2285 (1992).
[CrossRef]

C. H. Cox, G. Betts, L. M. Johnson, IEEE Trans. Microwave Theory Tech. 38, 501 (1990).
[CrossRef]

Proc. IEEE (1)

L. S. Culter, C. L. Searle, Proc. IEEE 54, 136 (1966).
[CrossRef]

Science (1)

R. L. Byer, Science 239, 742 (1988).
[CrossRef] [PubMed]

Other (4)

X. S. Yao, L. Maleki, “Light induced microwave oscillator,” TDA Progress Rep. No. 42–123 (Jet Propulsion Laboratory, Pasadena, Calif., 1995).

A. E. Sigman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 11.

M. F. Lewis, in Proceedings of the 1973 Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York, 1973), pp. 344–347.
[CrossRef]

Hewlett-Packard Company, “Phase noise characterization of microwave oscillators—frequency discriminator method,” product note 11729C-2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Device description of the OEO.

Fig. 2
Fig. 2

Normalized oscillation amplitude of the OEO as a function of the small-signal gain GS.

Fig. 3
Fig. 3

Single-sideband phase noise of a OEO measured at 800 MHz. (a) Measured phase-noise spectra at different loop delays and their fits to Eq. (6). The corresponding loop delays and oscillation power for curves 1– 5 are indicated at the top right. Curve fitting yields the following phase-noise relations as a function of frequency offset f′ for curves 1, 2, 3, 4, and 5, respectively: −28.7 − 20 log( f′), −34.84 − 20 log( f′), −38.14 − 20 log( f′), −40.61 − 20 log( f′), and −50.45 − 20 log( f′). (b) Phase noise at 30 kHz offset from the center frequency as a function of loop delay. Data points were derived from curves 1–5 of (a) and were corrected to account for oscillation power differences.

Fig. 4
Fig. 4

Single-sideband phase-noise measurements of the OEO at different oscillation frequencies: (a) phase noise spectra, (b) phase noise at 10-kHz offset frequency as a function of oscillation frequency, extracted from (a). The loop delay for the measurements is 0.28 μs.

Fig. 5
Fig. 5

Single-sideband phase noise at 10-kHz frequency offset as a function of oscillation power measured at 800 MHz. The curve fit yields −92.605 − Posc, where Posc is in decibels (dBm).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V out ( t ) = V ph { 1 - η sin  π [ V in ( t ) / V π + V B / V π ] } .
G S d V / d V in V in = 0 = - ( η π V ph / V π ) cos ( π V B / V π ) .
V out ( t ) = G ( V 0 ) V in ( t ) ,
G ( V 0 ) = G S [ 1 - 1 2 ( π V 0 2 V π ) 2 + 1 12 ( π V 0 2 V π ) 4 ] ,
V osc = ( 2 2 V π / π ) 1 - 1 / G S ( third - order approximation ) ,
V osc = ( 2 3 V π / π ) ( 1 - 4 / G S - 1 / 3 ) 1 / 2 ( fifth - order approximation ) .
S rf ( f ) = δ ( δ / 2 τ ) 2 + ( 2 π ) 2 ( τ f ) 2             ( for  2 π f τ < < 1 ) ,
δ ρ N G A 2 / P osc = [ 4 k B T ( NF ) + 2 e I ph R + N RIN I ph 2 R ] G A 2 / P osc ,

Metrics