Abstract

Stellar scintillations are considered noise in adaptive-optics sensors and are measured for calibration purposes only. We propose to use scintillations to provide direct instantaneous information about the structure of the atmosphere. As a result it will be possible to increase the field of view provided by adaptive optics. The scintillation pattern is created when stellar light is diffracted by high-altitude turbulence. Alternatively, this pattern can be viewed as a Laplacian of this turbulence and can thus be inverted to estimate it. The measurement is limited by the intensity and the angular size of the reference star, by the height distribution of the atmospheric turbulence, and by the detector resolution and spectral response.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Beckers, in Proceedings of European Southern Observatory, M.-H. Ulrich ed. (European Southern Observatory, Garching, Germany, 1988), Vol. 30, p. 693.
  2. J. Shamir, D. G. Crowe, J. W. Beletic, Appl. Opt. 32, 4618 (1993).
    [CrossRef] [PubMed]
  3. Y. Baharav, E. N. Ribak, J. Shamir, Opt. Lett. 19, 222 (1994), and references therein.
    [CrossRef]
  4. J. Vernin, F. Roddier, J. Opt. Soc. Am. 63, 270 (1973)J. L. Caccia, M. Azouit, J. Vernin, Appl. Opt. 26, 1228 (1987);J. L. Caccia, M. Azouit, J. Vernin, Appl. Opt. 27, 2229 (1988)F. Roddier, L. Cowie, J. E. Grves, A. Songaila, D. McKenna, J. Vernin, M. Azouit, J. L. Caccia, E. Limburg, C. Roddier, D. Salmon, S. Beland, D. Cowley, S. Hill, Proc. SPIE 1236, 485 (1990).
    [CrossRef]
  5. C. E. Coulman, Ann. Rev. Astron. Astrophys. 23, 19 (1985).
    [CrossRef]
  6. J. R. P. Angel, Nature (London) 368, 203 (1994).
    [CrossRef]
  7. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971), Chaps. 1 and 3.
  8. E. N. Ribak, Proc. SPIE 2426, 128 (1994).
    [CrossRef]
  9. L. A. Chernov, Wave Propagation in a Random Medium (McGraw-Hill, New York, 1960), Chap. 2.
  10. M. R. Teague, J. Opt. Soc. Am. 73, 1434 (1983).
    [CrossRef]
  11. N. Streibl, Opt. Commun. 49, 6 (1984).
    [CrossRef]
  12. F. Roddier, Appl. Opt. 27, 1223 (1988);F. Roddier, Appl. Opt. 29, 1402 (1990).
    [CrossRef] [PubMed]
  13. J. W. Goodman, Introduction to Fourier Optics (Wiley, New York, 1968), Chap. 4.
  14. C. Schwartz, E. N. Ribak, S. G. Lipson, J. Opt. Soc. Am. A 11, 895 (1994).
    [CrossRef]
  15. T. E. Gureyev, A. Roberts, K. A. Nugent, J. Opt. Soc. Am. A 12, 1932 (1995).
    [CrossRef]
  16. C. Schwartz, G. Baum, E. N. Ribak, J. Opt. Soc. Am. A 11, 444 (1994).
    [CrossRef]
  17. M. A. Ellison, H. Seddon, Mon. Not. R. Astron. Soc. 112, 73 (1952).

1995 (1)

1994 (5)

1993 (1)

1988 (1)

1985 (1)

C. E. Coulman, Ann. Rev. Astron. Astrophys. 23, 19 (1985).
[CrossRef]

1984 (1)

N. Streibl, Opt. Commun. 49, 6 (1984).
[CrossRef]

1983 (1)

1973 (1)

1971 (1)

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971), Chaps. 1 and 3.

1952 (1)

M. A. Ellison, H. Seddon, Mon. Not. R. Astron. Soc. 112, 73 (1952).

Angel, J. R. P.

J. R. P. Angel, Nature (London) 368, 203 (1994).
[CrossRef]

Baharav, Y.

Baum, G.

Beckers, J. M.

J. M. Beckers, in Proceedings of European Southern Observatory, M.-H. Ulrich ed. (European Southern Observatory, Garching, Germany, 1988), Vol. 30, p. 693.

Beletic, J. W.

Chernov, L. A.

L. A. Chernov, Wave Propagation in a Random Medium (McGraw-Hill, New York, 1960), Chap. 2.

Coulman, C. E.

C. E. Coulman, Ann. Rev. Astron. Astrophys. 23, 19 (1985).
[CrossRef]

Crowe, D. G.

Ellison, M. A.

M. A. Ellison, H. Seddon, Mon. Not. R. Astron. Soc. 112, 73 (1952).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Wiley, New York, 1968), Chap. 4.

Gureyev, T. E.

Lipson, S. G.

Nugent, K. A.

Ribak, E. N.

Roberts, A.

Roddier, F.

Schwartz, C.

Seddon, H.

M. A. Ellison, H. Seddon, Mon. Not. R. Astron. Soc. 112, 73 (1952).

Shamir, J.

Streibl, N.

N. Streibl, Opt. Commun. 49, 6 (1984).
[CrossRef]

Tatarskii, V. I.

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971), Chaps. 1 and 3.

Teague, M. R.

Vernin, J.

Ann. Rev. Astron. Astrophys. (1)

C. E. Coulman, Ann. Rev. Astron. Astrophys. 23, 19 (1985).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Mon. Not. R. Astron. Soc. (1)

M. A. Ellison, H. Seddon, Mon. Not. R. Astron. Soc. 112, 73 (1952).

Nature (1)

J. R. P. Angel, Nature (London) 368, 203 (1994).
[CrossRef]

Opt. Commun. (1)

N. Streibl, Opt. Commun. 49, 6 (1984).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

E. N. Ribak, Proc. SPIE 2426, 128 (1994).
[CrossRef]

The Effects of the Turbulent Atmosphere on Wave Propagation (1)

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Israel Program for Scientific Translations, Jerusalem, 1971), Chaps. 1 and 3.

Other (3)

L. A. Chernov, Wave Propagation in a Random Medium (McGraw-Hill, New York, 1960), Chap. 2.

J. W. Goodman, Introduction to Fourier Optics (Wiley, New York, 1968), Chap. 4.

J. M. Beckers, in Proceedings of European Southern Observatory, M.-H. Ulrich ed. (European Southern Observatory, Garching, Germany, 1988), Vol. 30, p. 693.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Single realization of high-altitude wave fronts, r0 = 10 cm. 1282 array, each element 2.5 cm. The telescope aperture (3-m diameter, 1/3 obscuration) is shown only for reference. (b) Wideband scintillation pattern at the telescope aperture resulting from the image in (a); the average number of photons per pixel is 100, as might be detected from a magnitude 6 star (0.5 total efficiency, 3-ms integration, λ = 550 nm, Δλ = 300 nm). (c) Direct deconvolution of the log-intensity image in (b): reconstructed wave fronts using scintillation inside the aperture. (d) Wiener deconvolution: reconstruction using models of the atmosphere and the noise. The rms difference between the original and the calculated wave front over the aperture, with the global slope removed, was 0.77 wave for both deconvolutions. At 1000 photons per pixel (a magnitude 3.6 star) both results were indistinguishable from the original.

Fig. 2
Fig. 2

Cuts across the centers of the input and resultant wave fronts using direct and Wiener deconvolutions (Fig. 1). The telescope is marked as two bars at the bottom. Low and high frequencies are lost.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

χ ( r ) ln  I ( r ) I ¯ = - 0 z 2 μ ( r , z ) d z - i = 1 L z i 2 μ i ( r ) ,
I ( r , z ) / z = - I ( r , z ) · ϕ ( r , z ) - I ( r , z ) 2 ϕ ( r , z ) .
Q ( r ) = P ( r ) * ( 2 λ h ) - 1 exp [ i k h ( 1 - r 2 / 2 h 2 ) ] .
F A ( w ) = 6.9 × 2 2 / 3 sin ( 5 π / 6 ) Γ 2 ( 11 / 6 ) × π - 2 r 0 - 5 / 3 w - 11 / 3 γ w - 11 / 3 ,
W ( w ) = - 4 π S ¯ γ / ( 16 π 2 γ S ¯ w 2 + w 5 / 3 ) .

Metrics