Abstract

A new scheme that shows large angular dispersion is proposed and demonstrated. The key idea to this method is a virtually imaged phased array (VIPA). The angular dispersion of a VIPA is 10–20 times larger than those of common diffraction gratings, which have blaze angles of ~30 deg. With the VIPA, wavelength demultiplexing for 10 channels with 0.8-nm spacing is achieved. Low polarization-state dependence (~0.1 dB) is also confirmed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, J. Lightwave Technol. LT-3, 1159 (1985).
    [CrossRef]
  2. D. R. Wisely, Electron. Lett. 27, 520 (1991).
    [CrossRef]

1991

D. R. Wisely, Electron. Lett. 27, 520 (1991).
[CrossRef]

1985

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, J. Lightwave Technol. LT-3, 1159 (1985).
[CrossRef]

Harvey, G. T.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, J. Lightwave Technol. LT-3, 1159 (1985).
[CrossRef]

Linke, R. A.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, J. Lightwave Technol. LT-3, 1159 (1985).
[CrossRef]

Lipson, J.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, J. Lightwave Technol. LT-3, 1159 (1985).
[CrossRef]

Minford, W. J.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, J. Lightwave Technol. LT-3, 1159 (1985).
[CrossRef]

Murphy, E. J.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, J. Lightwave Technol. LT-3, 1159 (1985).
[CrossRef]

Rice, T. C.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, J. Lightwave Technol. LT-3, 1159 (1985).
[CrossRef]

Wisely, D. R.

D. R. Wisely, Electron. Lett. 27, 520 (1991).
[CrossRef]

Electron. Lett.

D. R. Wisely, Electron. Lett. 27, 520 (1991).
[CrossRef]

J. Lightwave Technol.

J. Lipson, W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, G. T. Harvey, J. Lightwave Technol. LT-3, 1159 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of wavelength decomposition with the VIPA. The input light is line focused with a semicylindrical lens (C lens) into a thin plate of glass. Collimated light emerges at the output, and the output angle varies as the wavelength changes.

Fig. 2
Fig. 2

Details of the VIPA structure. A glass plate (~100 μm thick) has 95%-reflection coating on the right surface and 100%-reflection coating on the left surface. There is a window area on the left surface, which has antireflection coating (AR) instead of 100%-reflection coating. The glass plate produces many beams diverging from individual virtual images of the beam waist. These beams interfere and form collimated light.

Fig. 3
Fig. 3

Experimental setup for the measurement of angular dispersion. The input light from a single-mode fiber is collimated and line focused with a semicylindrical lens (C lens).The output light propagates at angle ϕ).

Fig. 4
Fig. 4

Relation between angle ϕ and wavelength. The dispersion is 0.4–0.8 deg/nm, and the spacing from one wavelength to the next is 8 nm.

Fig. 5
Fig. 5

Schematic of the wavelength demultiplexer. The collimated light from the glass plate is focused into the output fiber.

Fig. 6
Fig. 6

Transmission spectrum through fiber #5 (Fig. 7). 3- and 20-dB bandwidths are 0.3 and 1.5 nm, respectively.

Fig. 7
Fig. 7

Transmission spectra for the 11 fiber positions. The characteristics for a 10-channel wavelength demultiplexer with 0.8-nm channel spacing are obtained.

Metrics