Abstract

We propose a scheme for all-optical amplification based on a nonlinear-optical coupler in which one core is amplifying while another is attenuating. In this scheme the input signal is fed into the amplifying core, from where the output is also obtained. A weak input easily couples to the lossy core and gets dissipated in it, whereas a stronger signal stays and undergoes a nearly linear amplification in the active core. When it is used for reshaping pulses in a long transmission line, this scheme should allow the pulses to be amplified while simultaneously suppressing the noises between them. Simulating equations for the cw signal in this model, we are able to find a regime that provides for a strong contrast between the suppression of weak signals and amplification of strong ones as well as a steep transition from suppression to amplification at a certain threshold.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Matsumoto, H. Ikeda, A. Hasegawa, Opt. Lett. 19, 183 (1994 ); Electron. Lett. 31, 482 (1995 );H. Ikeda, M. Matsumoto, A. Hasegawa, Opt. Lett. 20, 1113 (1995).
    [CrossRef] [PubMed]
  2. M. Matsumoto, A. Hasegawa, Y. Kodama, Opt. Lett. 19, 1019 (1994).
    [CrossRef] [PubMed]
  3. S. Burtsev, D. J. Kaup, B. A. Malomed, “Optimum reshaping of an optical soliton by a nonlinear amplifier,” submitted toJ. Opt. Soc. Am. B.
  4. N. Doran, D. Wood, Opt. Lett. 13, 56 (1988).
    [CrossRef] [PubMed]
  5. S. M. Jensen, IEEE J. Quantum Electron. QE-18, 158 (1982 );A. M. Maier, Kvantovaya Elektron. (Moscow) 9, 2296 (1982) [Sov. J. Quantum Electron. 12, 1490 (1982)].
  6. H. G. Winful, D. T. Walton, Opt. Lett. 17, 1688 (1992).
    [CrossRef] [PubMed]
  7. P. L. Chu, G. D. Peng, B. A. Malomed, H. Hatami-Hanza, I. Skinner, Opt. Lett. 20, 1092 (1995).
    [CrossRef] [PubMed]
  8. B. A. Malomed, J.Opt. Soc. Am. B 11, 1261 (1994).
    [CrossRef]

1995 (1)

1994 (3)

1992 (1)

1988 (1)

1982 (1)

S. M. Jensen, IEEE J. Quantum Electron. QE-18, 158 (1982 );A. M. Maier, Kvantovaya Elektron. (Moscow) 9, 2296 (1982) [Sov. J. Quantum Electron. 12, 1490 (1982)].

Burtsev, S.

S. Burtsev, D. J. Kaup, B. A. Malomed, “Optimum reshaping of an optical soliton by a nonlinear amplifier,” submitted toJ. Opt. Soc. Am. B.

Chu, P. L.

Doran, N.

Hasegawa, A.

Hatami-Hanza, H.

Ikeda, H.

Jensen, S. M.

S. M. Jensen, IEEE J. Quantum Electron. QE-18, 158 (1982 );A. M. Maier, Kvantovaya Elektron. (Moscow) 9, 2296 (1982) [Sov. J. Quantum Electron. 12, 1490 (1982)].

Kaup, D. J.

S. Burtsev, D. J. Kaup, B. A. Malomed, “Optimum reshaping of an optical soliton by a nonlinear amplifier,” submitted toJ. Opt. Soc. Am. B.

Kodama, Y.

Malomed, B. A.

P. L. Chu, G. D. Peng, B. A. Malomed, H. Hatami-Hanza, I. Skinner, Opt. Lett. 20, 1092 (1995).
[CrossRef] [PubMed]

B. A. Malomed, J.Opt. Soc. Am. B 11, 1261 (1994).
[CrossRef]

S. Burtsev, D. J. Kaup, B. A. Malomed, “Optimum reshaping of an optical soliton by a nonlinear amplifier,” submitted toJ. Opt. Soc. Am. B.

Matsumoto, M.

Peng, G. D.

Skinner, I.

Walton, D. T.

Winful, H. G.

Wood, D.

IEEE J. Quantum Electron. (1)

S. M. Jensen, IEEE J. Quantum Electron. QE-18, 158 (1982 );A. M. Maier, Kvantovaya Elektron. (Moscow) 9, 2296 (1982) [Sov. J. Quantum Electron. 12, 1490 (1982)].

J.Opt. Soc. Am. B (1)

B. A. Malomed, J.Opt. Soc. Am. B 11, 1261 (1994).
[CrossRef]

Opt. Lett. (5)

Other (1)

S. Burtsev, D. J. Kaup, B. A. Malomed, “Optimum reshaping of an optical soliton by a nonlinear amplifier,” submitted toJ. Opt. Soc. Am. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Output-versus-input characteristic (in decibels) of the nonlinear amplifier with L = π/2, γ = 0.5, and Γ = 0 (the lower curve) or Γ = 0.5 (the upper curve).

Fig. 2
Fig. 2

Output-versus-input characteristic of the coupler with L = π operating in the filtering regime: γ = 0; Γ = 0.5 (the upper curve) or Γ = 1.0 (the lower curve).

Fig. 3
Fig. 3

Same characteristics as in Figs. 2 and 3 for L = π and γ = Γ = 0.5 (the solid curve), Γ = 0.25 (the dashed curve), and Γ = 0.75 (the dotted–dashed curve).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i d u d z + | u | 2 u K v = + i γ u ,
i d v d z + | v | 2 v K u = i Γ v ,
u P cos θ exp [ ( i / 2 ) ( ϕ + ψ ) ] , v P sin θ exp [ ( i / 2 ) ( ϕ ψ ) ] ,
d P d z = ( γ Γ ) P + ( γ + Γ ) P cos ( 2 θ ) ,
d θ d z = sin ψ 1 2 ( γ + Γ ) sin ( 2 θ ) ,
d ψ d z = P cos ( 2 θ ) + 2 cos ψ cot ( 2 θ ) .
cos ( 2 θ ) = γ Γ γ + Γ , sin ψ = γ + Γ 2 sin ( 2 θ ) , P = 2 cos ψ sin ( 2 θ )

Metrics