Abstract

A new incoherent Kerr shutter is demonstrated. It utilizes nanosecond optical pulses from an optical parametric oscillator (OPO) that has a broad bandwidth. Through the use of a β-BaB2O4 crystal, the OPO has a coherence time of 60–800 fs and shows wide wavelength tunability from 410 to 2600 nm. Kerr relaxation time constants for CS2 and nitrobenzene are the same as those cited in previous works. We also show, for the first time to our knowledge, a 100-fs response for a nitrobenzene solution of 4-(N,N-diethylamino)-β-nitrostyrene at a 740-nm idler wavelength.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Morita, T. Yajima, Phys. Rev. A 30, 2525 (1984).
    [CrossRef]
  2. A. M. Weiner, S. De Silvestri, E. P. Ippen, J. Opt. Soc. Am. B 2, 654 (1985).
    [CrossRef]
  3. N. Morita, T. Tokizaki, T. Yajima, J. Opt. Soc. Am. B 4, 1269 (1987).
    [CrossRef]
  4. M. Tomita, M. Matsuoka, J. Opt. Soc. Am. B 3, 560 (1986).
    [CrossRef]
  5. H. Nakatsuka, Y. Katashima, K. Inouye, R. Yano, Opt. Commun. 69, 169 (1988).
    [CrossRef]
  6. R. Beach, S. R. Hartmann, Phys. Rev. Lett. 53, 663 (1984).
    [CrossRef]
  7. A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
    [CrossRef]
  8. T. Kobayashi, A. Terasaki, T. Hattori, K. Kurokawa, Appl. Phys. B 47, 107 (1988).
    [CrossRef]
  9. H. Nakatsuka, A. Wakamiya, K. M. Abedin, T. Hattori, Opt. Lett. 18, 832 (1993).
    [CrossRef] [PubMed]
  10. W. Dietel, E. Dopel, D. Kuhlke, B. Wilhelmi, Opt. Commun. 43, 433 (1982).
    [CrossRef]
  11. S. D. Silvestri, P. Laporta, O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
    [CrossRef]
  12. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  13. G. A. Massey, M. D. Jones, J. C. Johnson, IEEE J. Quantum Electron. QE-14, 527 (1978).
    [CrossRef]
  14. K. Kato, IEEE J. Quantum Electron. 26, 2043 (1990).
    [CrossRef]
  15. H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, T. Kaino, IEEE Photon. Technol. Lett. 3, 795 (1991).
    [CrossRef]

1993 (1)

1991 (1)

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, T. Kaino, IEEE Photon. Technol. Lett. 3, 795 (1991).
[CrossRef]

1990 (1)

K. Kato, IEEE J. Quantum Electron. 26, 2043 (1990).
[CrossRef]

1988 (2)

H. Nakatsuka, Y. Katashima, K. Inouye, R. Yano, Opt. Commun. 69, 169 (1988).
[CrossRef]

T. Kobayashi, A. Terasaki, T. Hattori, K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

1987 (1)

1986 (1)

1985 (1)

1984 (3)

R. Beach, S. R. Hartmann, Phys. Rev. Lett. 53, 663 (1984).
[CrossRef]

N. Morita, T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

S. D. Silvestri, P. Laporta, O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
[CrossRef]

1982 (1)

W. Dietel, E. Dopel, D. Kuhlke, B. Wilhelmi, Opt. Commun. 43, 433 (1982).
[CrossRef]

1978 (2)

A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[CrossRef]

G. A. Massey, M. D. Jones, J. C. Johnson, IEEE J. Quantum Electron. QE-14, 527 (1978).
[CrossRef]

Abedin, K. M.

Beach, R.

R. Beach, S. R. Hartmann, Phys. Rev. Lett. 53, 663 (1984).
[CrossRef]

De Silvestri, S.

Dietel, W.

W. Dietel, E. Dopel, D. Kuhlke, B. Wilhelmi, Opt. Commun. 43, 433 (1982).
[CrossRef]

Dopel, E.

W. Dietel, E. Dopel, D. Kuhlke, B. Wilhelmi, Opt. Commun. 43, 433 (1982).
[CrossRef]

Hartmann, S. R.

R. Beach, S. R. Hartmann, Phys. Rev. Lett. 53, 663 (1984).
[CrossRef]

Hattori, T.

H. Nakatsuka, A. Wakamiya, K. M. Abedin, T. Hattori, Opt. Lett. 18, 832 (1993).
[CrossRef] [PubMed]

T. Kobayashi, A. Terasaki, T. Hattori, K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

Inouye, K.

H. Nakatsuka, Y. Katashima, K. Inouye, R. Yano, Opt. Commun. 69, 169 (1988).
[CrossRef]

Ippen, E. P.

Johnson, J. C.

G. A. Massey, M. D. Jones, J. C. Johnson, IEEE J. Quantum Electron. QE-14, 527 (1978).
[CrossRef]

Jones, M. D.

G. A. Massey, M. D. Jones, J. C. Johnson, IEEE J. Quantum Electron. QE-14, 527 (1978).
[CrossRef]

Kaino, T.

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, T. Kaino, IEEE Photon. Technol. Lett. 3, 795 (1991).
[CrossRef]

Kaiser, W.

A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[CrossRef]

Kanbara, H.

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, T. Kaino, IEEE Photon. Technol. Lett. 3, 795 (1991).
[CrossRef]

Katashima, Y.

H. Nakatsuka, Y. Katashima, K. Inouye, R. Yano, Opt. Commun. 69, 169 (1988).
[CrossRef]

Kato, K.

K. Kato, IEEE J. Quantum Electron. 26, 2043 (1990).
[CrossRef]

Kobayashi, H.

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, T. Kaino, IEEE Photon. Technol. Lett. 3, 795 (1991).
[CrossRef]

Kobayashi, T.

T. Kobayashi, A. Terasaki, T. Hattori, K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

Kubodera, K.

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, T. Kaino, IEEE Photon. Technol. Lett. 3, 795 (1991).
[CrossRef]

Kuhlke, D.

W. Dietel, E. Dopel, D. Kuhlke, B. Wilhelmi, Opt. Commun. 43, 433 (1982).
[CrossRef]

Kurihara, T.

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, T. Kaino, IEEE Photon. Technol. Lett. 3, 795 (1991).
[CrossRef]

Kurokawa, K.

T. Kobayashi, A. Terasaki, T. Hattori, K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

Laporta, P.

S. D. Silvestri, P. Laporta, O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
[CrossRef]

Laubereau, A.

A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[CrossRef]

Massey, G. A.

G. A. Massey, M. D. Jones, J. C. Johnson, IEEE J. Quantum Electron. QE-14, 527 (1978).
[CrossRef]

Matsuoka, M.

Morita, N.

Nakatsuka, H.

H. Nakatsuka, A. Wakamiya, K. M. Abedin, T. Hattori, Opt. Lett. 18, 832 (1993).
[CrossRef] [PubMed]

H. Nakatsuka, Y. Katashima, K. Inouye, R. Yano, Opt. Commun. 69, 169 (1988).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Silvestri, S. D.

S. D. Silvestri, P. Laporta, O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
[CrossRef]

Svelto, O.

S. D. Silvestri, P. Laporta, O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
[CrossRef]

Terasaki, A.

T. Kobayashi, A. Terasaki, T. Hattori, K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

Tokizaki, T.

Tomita, M.

Wakamiya, A.

Weiner, A. M.

Wilhelmi, B.

W. Dietel, E. Dopel, D. Kuhlke, B. Wilhelmi, Opt. Commun. 43, 433 (1982).
[CrossRef]

Yajima, T.

Yano, R.

H. Nakatsuka, Y. Katashima, K. Inouye, R. Yano, Opt. Commun. 69, 169 (1988).
[CrossRef]

Appl. Phys. B (1)

T. Kobayashi, A. Terasaki, T. Hattori, K. Kurokawa, Appl. Phys. B 47, 107 (1988).
[CrossRef]

IEEE J. Quantum Electron. (3)

G. A. Massey, M. D. Jones, J. C. Johnson, IEEE J. Quantum Electron. QE-14, 527 (1978).
[CrossRef]

K. Kato, IEEE J. Quantum Electron. 26, 2043 (1990).
[CrossRef]

S. D. Silvestri, P. Laporta, O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Kanbara, H. Kobayashi, K. Kubodera, T. Kurihara, T. Kaino, IEEE Photon. Technol. Lett. 3, 795 (1991).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

W. Dietel, E. Dopel, D. Kuhlke, B. Wilhelmi, Opt. Commun. 43, 433 (1982).
[CrossRef]

H. Nakatsuka, Y. Katashima, K. Inouye, R. Yano, Opt. Commun. 69, 169 (1988).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

N. Morita, T. Yajima, Phys. Rev. A 30, 2525 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

R. Beach, S. R. Hartmann, Phys. Rev. Lett. 53, 663 (1984).
[CrossRef]

Rev. Mod. Phys. (1)

A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[CrossRef]

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Measured spectral width of an OPO signal. This permits the estimation of time resolution of the OPO.

Fig. 2
Fig. 2

Schematic showing the experimental setup for an OPO incoherent Kerr shutter. The wavelength-independent optics comprise reflection prisms, a beam splitter (BS), Fresnel rhombs (F. Rhomb’s), polarizers (Pol.’s), and lenses. The Kerr shutter output is detected by a photomultiplier (PMT) through a sample cell, an analyzer, and a monochromator. A spatial filter (SF) and irises are necessary to preserve spatial coherence. THG, third-harmonic generator; SHG, second-harmonic generator.

Fig. 3
Fig. 3

Decay curve for the optical Kerr shutter for CS2. The straight line on the relaxation curve shows the Kerr relaxation constant TKerr.

Fig. 4
Fig. 4

Decay curve for the optical Kerr shutter for nitrobenzene. The straight line on the relaxation curve shows TKerr. Fast decay time constant Tf appears in the vicinity of 1-ps delay time.

Fig. 5
Fig. 5

Decay curve for the optical Kerr shutter using DEANST at 740 nm. DEANST shows a fast decay time constant Tf of 100 fs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ ω = 2 π c l | n 1 n 2 + ω 1 n 1 ω 1 ω 2 n 2 ω 2 | ,
τ g = d ϕ d ω = l c ( n + ω d n d ω ) .
δ ω = 2 π l | τ 1 g 0 τ 2 g 0 | ,

Metrics