Abstract

We present a novel method for three-dimensional optical data storage that has submicrometer size resolution, provides a large contrast in index of refraction, and is applicable to a wide range of transparent materials. Bits are recorded by use of a 0.65-N.A. objective to focus 100-fs laser pulses inside the material. The laser pulse produces a submicrometer-diameter structurally altered region with high contrast in index of refraction. We record binary information by writing such bits in multiple planes and read it out with a microscope objective with a short depth of field. We demonstrate data storage and retrieval with 2-μm in-plane bit spacing and 15-μm interplane spacing (17 Gbits/cm3). Scanning electron microscopy and atomic force microscopy show structural changes confined to an area 200 nm in diameter.

© 1996 Optical Society of America

Full Article  |  PDF Article

Corrections

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials: errata," Opt. Lett. 22, 422-422 (1997)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-22-6-422

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
    [CrossRef] [PubMed]
  2. J. H. Strickler, W. W. Webb, Opt. Lett. 16, 1780 (1991); J. H. Strickler, W. W. Webb, “Method for three dimensional optical data storage and retrieval,” U.S. patent5,289,407 (February22, 1994).
    [CrossRef] [PubMed]
  3. Y. Kawata, H. Ueki, Y. Hashimoto, S. Kawata, Appl. Opt. 34, 4105 (1995).
    [CrossRef] [PubMed]
  4. H. Ueki, Y. Kawata, S. Kawata, Appl. Opt. 35, 2457 (1996).
    [CrossRef] [PubMed]
  5. J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
    [CrossRef]
  6. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
    [CrossRef]
  7. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
    [CrossRef] [PubMed]
  8. D. von der Linde, H. Schüler, J. Opt. Soc. Am. B 13, 216 (1996).
    [CrossRef]

1996 (2)

1995 (2)

Y. Kawata, H. Ueki, Y. Hashimoto, S. Kawata, Appl. Opt. 34, 4105 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef] [PubMed]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

1992 (1)

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[CrossRef]

1991 (1)

1989 (1)

D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef] [PubMed]

Hashimoto, Y.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef] [PubMed]

Ihlemann, J.

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[CrossRef]

Kawata, S.

Kawata, Y.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef] [PubMed]

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef] [PubMed]

Schüler, H.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef] [PubMed]

Simon, P.

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

Strickler, J. H.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef] [PubMed]

Ueki, H.

von der Linde, D.

Webb, W. W.

Wolff, B.

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[CrossRef] [PubMed]

Science (1)

D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of 3-D optical data storage.

Fig. 2
Fig. 2

Binary data pattern stored inside fused silica with 2-μm bit spacing, photographed with an optical microscope using transmitted light.

Fig. 3
Fig. 3

Tilted SEM view of a polished cross section through a regular array of bits with 5-μm spacing. The inset shows a single bit at higher magnification.

Fig. 4
Fig. 4

Damage produced inside fused silica by 200-ps pulses: optical microscope photograph using transmitted light. Note the difference in scale relative to Fig. 2; bits are spaced by 10 μm.

Metrics