Abstract

We present a novel method for three-dimensional optical data storage that has submicrometer size resolution, provides a large contrast in index of refraction, and is applicable to a wide range of transparent materials. Bits are recorded by use of a 0.65-N.A. objective to focus 100-fs laser pulses inside the material. The laser pulse produces a submicrometer-diameter structurally altered region with high contrast in index of refraction. We record binary information by writing such bits in multiple planes and read it out with a microscope objective with a short depth of field. We demonstrate data storage and retrieval with 2-μm in-plane bit spacing and 15-μm interplane spacing (17 Gbits/cm3). Scanning electron microscopy and atomic force microscopy show structural changes confined to an area 200 nm in diameter.

© 1996 Optical Society of America

Full Article  |  PDF Article

Corrections

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials: errata," Opt. Lett. 22, 422-422 (1997)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-22-6-422

OSA Recommended Articles
Sm(DBM)3Phen - doped poly(methyl methacrylate) for three-dimensional multilayered optical memory

Hongfang Jiu, Huohong Tang, Jingli Zhou, Jie Xu, Qijin Zhang, Hui Xing, Wenhao Huang, and Andong Xia
Opt. Lett. 30(7) 774-776 (2005)

Three-dimensional optical memory using a human fingernail

Akihiro Takita, Hirotsugu Yamamoto, Yoshio Hayasaki, Nobuo Nishida, and Hiroaki Misawa
Opt. Express 13(12) 4560-4567 (2005)

Formation and applications of periodic structures in transparent materials induced by single fs laser beam

Fangteng Zhang, Yu Teng, Yongze Yu, Kaniyarakkal N. Sharafudeen, Kazuyuki Hirao, and Jianrong Qiu
Opt. Mater. Express 3(11) 1944-1951 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
    [Crossref] [PubMed]
  2. J. H. Strickler, W. W. Webb, Opt. Lett. 16, 1780 (1991); J. H. Strickler, W. W. Webb, “Method for three dimensional optical data storage and retrieval,” U.S. patent5,289,407 (February22, 1994).
    [Crossref] [PubMed]
  3. Y. Kawata, H. Ueki, Y. Hashimoto, S. Kawata, Appl. Opt. 34, 4105 (1995).
    [Crossref] [PubMed]
  4. H. Ueki, Y. Kawata, S. Kawata, Appl. Opt. 35, 2457 (1996).
    [Crossref] [PubMed]
  5. J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
    [Crossref]
  6. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
    [Crossref]
  7. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
    [Crossref] [PubMed]
  8. D. von der Linde, H. Schüler, J. Opt. Soc. Am. B 13, 216 (1996).
    [Crossref]

1996 (2)

1995 (2)

Y. Kawata, H. Ueki, Y. Hashimoto, S. Kawata, Appl. Opt. 34, 4105 (1995).
[Crossref] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[Crossref] [PubMed]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[Crossref]

1992 (1)

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[Crossref]

1991 (1)

1989 (1)

D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
[Crossref] [PubMed]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[Crossref] [PubMed]

Hashimoto, Y.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[Crossref] [PubMed]

Ihlemann, J.

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[Crossref]

Kawata, S.

Kawata, Y.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[Crossref]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[Crossref]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[Crossref]

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
[Crossref] [PubMed]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[Crossref] [PubMed]

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
[Crossref] [PubMed]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[Crossref] [PubMed]

Schüler, H.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[Crossref] [PubMed]

Simon, P.

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[Crossref]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[Crossref]

Strickler, J. H.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[Crossref] [PubMed]

Ueki, H.

von der Linde, D.

Webb, W. W.

Wolff, B.

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A (1)

J. Ihlemann, B. Wolff, P. Simon, Appl. Phys. A 54, 363 (1992).
[Crossref]

Appl. Phys. Lett. (1)

D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995); J. Opt. Soc. Am. B 13, 459 (1996).
[Crossref] [PubMed]

Science (1)

D. A. Parthenopoulos, P. M. Rentzepis, Science 245, 843 (1989).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of 3-D optical data storage.

Fig. 2
Fig. 2

Binary data pattern stored inside fused silica with 2-μm bit spacing, photographed with an optical microscope using transmitted light.

Fig. 3
Fig. 3

Tilted SEM view of a polished cross section through a regular array of bits with 5-μm spacing. The inset shows a single bit at higher magnification.

Fig. 4
Fig. 4

Damage produced inside fused silica by 200-ps pulses: optical microscope photograph using transmitted light. Note the difference in scale relative to Fig. 2; bits are spaced by 10 μm.

Metrics