Abstract

We investigate the properties of a tunable single-mode waveguide microcavity that is well suited for frequency modulation and switching. The cavity mode has a volume of less than one cubic half-wavelength, and the resonant frequency is tuned by refractive-index modulation. We suggest using a photorefractive effect to drive the device, based on the photoionization of deep donor levels known as DX centers in compound semiconductors. Picosecond on–off switching times are achievable when two of these cavities are placed in series. The resulting switch has the advantages of being compact and requiring as little as 10 pJ of energy of operate.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995), Chaps. 5 and 6.
  2. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
    [CrossRef]
  3. S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, J. D. Joannopoulos, J. Opt. Soc. Am. B 12, 1267 (1995).
    [CrossRef]
  4. M. Y. Liu, S. Y. Chou, Appl. Phys. Lett. 68, 170 (1996).
    [CrossRef]
  5. We have tested our results with a similar time-domain code in three dimensions. The two-dimensional code has consistantly proved to be reliable for the analysis of these microcavities.
  6. K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).
  7. J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  8. J. C. Chen, K. Li, Microwave Opt. Technol. Lett. 10, 319 (1995).
    [CrossRef]
  9. R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
    [CrossRef]
  10. R. A. Linke, NEC Research Institute, Inc., Princeton, N.J. 08540 (personal communication).
  11. E. Ippen, Appl. Phys. B 58, 159 (1994).
    [CrossRef]
  12. S. Nakamura, K. Tajima, Y. Sugimoto, Appl. Phys. Lett. 67, 2445 (1995).
    [CrossRef]
  13. It may be possible to reduce the recovery time by raising the temperature or by changing the chemical composition of the semiconductor.

1996 (1)

M. Y. Liu, S. Y. Chou, Appl. Phys. Lett. 68, 170 (1996).
[CrossRef]

1995 (4)

J. C. Chen, K. Li, Microwave Opt. Technol. Lett. 10, 319 (1995).
[CrossRef]

S. Nakamura, K. Tajima, Y. Sugimoto, Appl. Phys. Lett. 67, 2445 (1995).
[CrossRef]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, J. D. Joannopoulos, J. Opt. Soc. Am. B 12, 1267 (1995).
[CrossRef]

1994 (3)

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[CrossRef]

E. Ippen, Appl. Phys. B 58, 159 (1994).
[CrossRef]

1966 (1)

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

Berenger, J. P.

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Chadi, J. D.

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[CrossRef]

Chen, J. C.

Chou, S. Y.

M. Y. Liu, S. Y. Chou, Appl. Phys. Lett. 68, 170 (1996).
[CrossRef]

Devenyi, A.

Devlin, G. E.

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[CrossRef]

Fan, S.

S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, J. D. Joannopoulos, J. Opt. Soc. Am. B 12, 1267 (1995).
[CrossRef]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Ippen, E.

E. Ippen, Appl. Phys. B 58, 159 (1994).
[CrossRef]

Joannopoulos, J. D.

S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, J. D. Joannopoulos, J. Opt. Soc. Am. B 12, 1267 (1995).
[CrossRef]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995), Chaps. 5 and 6.

Kolodziejski, L. A.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Li, K.

J. C. Chen, K. Li, Microwave Opt. Technol. Lett. 10, 319 (1995).
[CrossRef]

Lim, K. Y.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Linke, R. A.

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[CrossRef]

R. A. Linke, NEC Research Institute, Inc., Princeton, N.J. 08540 (personal communication).

Liu, M. Y.

M. Y. Liu, S. Y. Chou, Appl. Phys. Lett. 68, 170 (1996).
[CrossRef]

Meade, R. D.

S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, J. D. Joannopoulos, J. Opt. Soc. Am. B 12, 1267 (1995).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995), Chaps. 5 and 6.

Nakamura, S.

S. Nakamura, K. Tajima, Y. Sugimoto, Appl. Phys. Lett. 67, 2445 (1995).
[CrossRef]

Petrich, G. S.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Reif, R.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Sugimoto, Y.

S. Nakamura, K. Tajima, Y. Sugimoto, Appl. Phys. Lett. 67, 2445 (1995).
[CrossRef]

Tajima, K.

S. Nakamura, K. Tajima, Y. Sugimoto, Appl. Phys. Lett. 67, 2445 (1995).
[CrossRef]

Thio, T.

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[CrossRef]

Villeneuve, P. R.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Winn, J. N.

S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, J. D. Joannopoulos, J. Opt. Soc. Am. B 12, 1267 (1995).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995), Chaps. 5 and 6.

Yee, K. S.

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

Appl. Phys. B (1)

E. Ippen, Appl. Phys. B 58, 159 (1994).
[CrossRef]

Appl. Phys. Lett. (4)

S. Nakamura, K. Tajima, Y. Sugimoto, Appl. Phys. Lett. 67, 2445 (1995).
[CrossRef]

M. Y. Liu, S. Y. Chou, Appl. Phys. Lett. 68, 170 (1996).
[CrossRef]

R. A. Linke, T. Thio, J. D. Chadi, G. E. Devlin, Appl. Phys. Lett. 65, 16 (1994).
[CrossRef]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

J. Comput. Phys. (1)

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

J. C. Chen, K. Li, Microwave Opt. Technol. Lett. 10, 319 (1995).
[CrossRef]

Other (4)

We have tested our results with a similar time-domain code in three dimensions. The two-dimensional code has consistantly proved to be reliable for the analysis of these microcavities.

It may be possible to reduce the recovery time by raising the temperature or by changing the chemical composition of the semiconductor.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995), Chaps. 5 and 6.

R. A. Linke, NEC Research Institute, Inc., Princeton, N.J. 08540 (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Transmission spectrum through the cavity normalized with respect to the incident intensity. The waveguide has a refractive index of 3.37, a width of 1.19a, holes of radius 0.35a, and a defect of 1.38a, where a is the distance between holes, center to center. The cavity is single mode over the entire width of the gap. The inset shows the top view of the microcavity. (b) Magnetic field distribution of the resonant mode. The magnetic field is polarized in the normal direction; black (white) corresponds to a field pointing up (down). Gray corresponds to zero field. The overlay indicates the position of the microcavity.

Fig. 2
Fig. 2

Resonant frequency shift as a function of index change in the cavity, computed from expression (2).

Fig. 3
Fig. 3

Transmission spectrum through the index-modulated cavity (solid curve) with an index change of −3 × 10−3. The spectrum of the unshifted resonance is also shown (dashed curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ f = ( 1 1 + σ δ n n - 1 ) f 0
| δ n n | min - 1 σ 1 Q ± 1 1 σ Q ,

Metrics