Abstract

A feasibility study of controlling the carrier phase in ultrashort light-wave packets emitted by a sub-10-fs laser is reported. An experimental apparatus capable of exploring the phase sensitivity of nonlinear-optical interactions is presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Xu, Ch. Spielmann, F. Krausz, R. Szipöcs, Opt. Lett. 21, 1259 (1996).
    [CrossRef] [PubMed]
  2. K. L. Sala, G. A. Kenny-Wallace, G. E. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
    [CrossRef]
  3. H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
    [CrossRef]
  4. Our computer simulations revealed that the coupling between δW and δω0 relates to the rapidly decreasing magnitude of negative cavity GDD below 0.7 μm (Ref. 1) and to the finite response time of the Kerr nonlinearity.
  5. D. von der Linde, Appl. Phys. B 39, 201 (1986).
    [CrossRef]
  6. L. V. Keldysh, Sov. Phys. JETP 47, 1307 (1964).
  7. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

1996 (1)

1993 (1)

H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

1986 (1)

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

1980 (1)

K. L. Sala, G. A. Kenny-Wallace, G. E. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

1964 (1)

L. V. Keldysh, Sov. Phys. JETP 47, 1307 (1964).

De Silvestri, S.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

Ferencz, K.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

Hall, G. E.

K. L. Sala, G. A. Kenny-Wallace, G. E. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

Haus, H. A.

H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, Sov. Phys. JETP 47, 1307 (1964).

Kenny-Wallace, G. A.

K. L. Sala, G. A. Kenny-Wallace, G. E. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

Krausz, F.

L. Xu, Ch. Spielmann, F. Krausz, R. Szipöcs, Opt. Lett. 21, 1259 (1996).
[CrossRef] [PubMed]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

Mecozzi, A.

H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Nisoli, M.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

Sala, K. L.

K. L. Sala, G. A. Kenny-Wallace, G. E. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

Sartania, S.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

Spielmann, Ch.

L. Xu, Ch. Spielmann, F. Krausz, R. Szipöcs, Opt. Lett. 21, 1259 (1996).
[CrossRef] [PubMed]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

Svelto, O.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

Szipöcs, R.

L. Xu, Ch. Spielmann, F. Krausz, R. Szipöcs, Opt. Lett. 21, 1259 (1996).
[CrossRef] [PubMed]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

von der Linde, D.

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Xu, L.

Appl. Phys. B (1)

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. L. Sala, G. A. Kenny-Wallace, G. E. Hall, IEEE J. Quantum Electron. 16, 990 (1980).
[CrossRef]

H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Opt. Lett. (1)

Sov. Phys. JETP (1)

L. V. Keldysh, Sov. Phys. JETP 47, 1307 (1964).

Other (2)

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, S. Sartania, Ch. Spielmann, F. Krausz, “Compression of high energy pulses below 5 fs,” submitted to Opt. Lett.

Our computer simulations revealed that the coupling between δW and δω0 relates to the rapidly decreasing magnitude of negative cavity GDD below 0.7 μm (Ref. 1) and to the finite response time of the Kerr nonlinearity.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the correlator used to the measure Δψ. To balance dispersion in the correlator arms precisely, we evacuate a delay section equal to the resonator round-trip length in the long arm, a compensation plate (CP) is used to introduce the same amount of fused silica into the short arm as the tube windows introduce into the long arm, and pulse splitting and recombination are implemented by identical broadband dielectric coatings on opposite sides of the beam splitter. PMT, photomultiplier tube; BBO, β-barium borate.

Fig 2
Fig 2

Principle of the measurement of Δψ. En(t) and En+1(t) describe successive pulses from the laser. Δψ − 2 can be determined from the position of the fringe peaks on the envelope of G(τ).

Fig. 3
Fig. 3

Measured (filled circles) and calculated (line) changes in the round-trip carrier phase shift with increasing propagation length through the intracavity fused-silica wedge. The initial value of lg was set to yield Δψ(Δlg = 0) ≈ 2.

Fig. 4
Fig. 4

Measured round-trip carrier phase shift for different values of the cavity GDD (filled squares and triangles) and center of the laser spectrum (filled circles) as a function of intracavity pulse energy. The open squares and triangles depict Δψ − 2 obtained from Eq. (4) as described in the text. The solid lines and the dashed curve are guides to the eye.

Fig. 5
Fig. 5

Power spectral density SW(ω) of δW(T)/W0 (normalized to a 1-Hz bandwidth) on a logaritmic scale and the calculated σψ (ω) as defined in the text.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( t , z ) = A ( t , z ) exp [ - i ω 0 t + i ψ ( z ) ] + c . c . ,
Δ ψ = ϕ R - ω 0 T R
σ ψ 2 = [ ψ ( T ) - ψ 0 ] 2 = 1 π 0 ω R / 2 S δ ψ ( ω ) ω 2 T R 2 d ω ,
δ ψ ( T ) = ϕ Kerr ( d P peak d W ) W 0 δ W ( T ) - ω 0 D δ ω 0 ( T ) .
Δ ψ ( W ) - Δ ψ ( W 0 ) ϕ Kerr [ P peak ( W ) - P peak ( W 0 ) ] - ω 0 ( W 0 ) D [ ω 0 ( W ) - ω 0 ( W 0 ) ] ,

Metrics