Abstract

We propose to produce a superfluorescent fiber source (SFS) with a linearly polarized output by inserting a discrete polarizer near the middle of a polarization-maintaining Er-doped fiber. We show that with a relatively low-loss polarizer (<0.5 dB) the output power of the polarized SFS is predicted to approach that of a standard, unpolarized SFS, i.e., the power of the desired polarization mode is nearly doubled. The efficiency of this source depends weakly on the polarizer location and extinction ratio, although it depends strongly on its insertion loss.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Desurvire, J. R. Simpson, J. Lightwave Technol. 7, 835 (1989).
    [CrossRef]
  2. P. R. Morkel, in Optical Fiber Sensors, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, New York, 1989), p. 143.
    [CrossRef]
  3. P. F. Wysocki, R. F. Kalman, M. J. F. Digonnet, B. Y. Kim, Proc. SPIE 1373, 66 (1990).
    [CrossRef]
  4. R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 6, 198 (1981).
    [CrossRef] [PubMed]
  5. W. K. Burns, C. L. Chen, R. P. Moeller, J. Lightwave Technol. 1, 98 (1983).
    [CrossRef]
  6. P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, Proc. SPIE 1789, 66 (1993).
    [CrossRef]
  7. J. L. Wagener, “Erbium doped fiber sources and amplifiers for optical sensors,” Ph.D. dissertation (Department of Applied Physics, Stanford University, Stanford, Calif., March1996).
  8. A. N. Tobin, T. R. Hart, P. Rainbird, W. Johnstone, G. Stewart, B. Culshaw, Proc. SPIE 988, 77 (1989).
  9. R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 5, 479 (1980).
    [CrossRef] [PubMed]
  10. A. Wang, V. Arya, M. H. Nasta, K. A. Murphy, R. O. Claus, Opt. Lett. 20, 279 (1995).
    [CrossRef] [PubMed]

1995 (1)

1993 (1)

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, Proc. SPIE 1789, 66 (1993).
[CrossRef]

1990 (1)

P. F. Wysocki, R. F. Kalman, M. J. F. Digonnet, B. Y. Kim, Proc. SPIE 1373, 66 (1990).
[CrossRef]

1989 (2)

E. Desurvire, J. R. Simpson, J. Lightwave Technol. 7, 835 (1989).
[CrossRef]

A. N. Tobin, T. R. Hart, P. Rainbird, W. Johnstone, G. Stewart, B. Culshaw, Proc. SPIE 988, 77 (1989).

1983 (1)

W. K. Burns, C. L. Chen, R. P. Moeller, J. Lightwave Technol. 1, 98 (1983).
[CrossRef]

1981 (1)

1980 (1)

Arya, V.

Bergh, R. A.

Burns, W. K.

W. K. Burns, C. L. Chen, R. P. Moeller, J. Lightwave Technol. 1, 98 (1983).
[CrossRef]

Chen, C. L.

W. K. Burns, C. L. Chen, R. P. Moeller, J. Lightwave Technol. 1, 98 (1983).
[CrossRef]

Claus, R. O.

Culshaw, B.

A. N. Tobin, T. R. Hart, P. Rainbird, W. Johnstone, G. Stewart, B. Culshaw, Proc. SPIE 988, 77 (1989).

Desurvire, E.

E. Desurvire, J. R. Simpson, J. Lightwave Technol. 7, 835 (1989).
[CrossRef]

Digonnet, M. J. F.

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, Proc. SPIE 1789, 66 (1993).
[CrossRef]

P. F. Wysocki, R. F. Kalman, M. J. F. Digonnet, B. Y. Kim, Proc. SPIE 1373, 66 (1990).
[CrossRef]

Hart, T. R.

A. N. Tobin, T. R. Hart, P. Rainbird, W. Johnstone, G. Stewart, B. Culshaw, Proc. SPIE 988, 77 (1989).

Johnstone, W.

A. N. Tobin, T. R. Hart, P. Rainbird, W. Johnstone, G. Stewart, B. Culshaw, Proc. SPIE 988, 77 (1989).

Kalman, R. F.

P. F. Wysocki, R. F. Kalman, M. J. F. Digonnet, B. Y. Kim, Proc. SPIE 1373, 66 (1990).
[CrossRef]

Kim, B. Y.

P. F. Wysocki, R. F. Kalman, M. J. F. Digonnet, B. Y. Kim, Proc. SPIE 1373, 66 (1990).
[CrossRef]

Lefevre, H. C.

Moeller, R. P.

W. K. Burns, C. L. Chen, R. P. Moeller, J. Lightwave Technol. 1, 98 (1983).
[CrossRef]

Morkel, P. R.

P. R. Morkel, in Optical Fiber Sensors, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, New York, 1989), p. 143.
[CrossRef]

Murphy, K. A.

Nasta, M. H.

Rainbird, P.

A. N. Tobin, T. R. Hart, P. Rainbird, W. Johnstone, G. Stewart, B. Culshaw, Proc. SPIE 988, 77 (1989).

Shaw, H. J.

Simpson, J. R.

E. Desurvire, J. R. Simpson, J. Lightwave Technol. 7, 835 (1989).
[CrossRef]

Stewart, G.

A. N. Tobin, T. R. Hart, P. Rainbird, W. Johnstone, G. Stewart, B. Culshaw, Proc. SPIE 988, 77 (1989).

Tobin, A. N.

A. N. Tobin, T. R. Hart, P. Rainbird, W. Johnstone, G. Stewart, B. Culshaw, Proc. SPIE 988, 77 (1989).

Wagener, J. L.

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, Proc. SPIE 1789, 66 (1993).
[CrossRef]

J. L. Wagener, “Erbium doped fiber sources and amplifiers for optical sensors,” Ph.D. dissertation (Department of Applied Physics, Stanford University, Stanford, Calif., March1996).

Wang, A.

Wysocki, P. F.

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, Proc. SPIE 1789, 66 (1993).
[CrossRef]

P. F. Wysocki, R. F. Kalman, M. J. F. Digonnet, B. Y. Kim, Proc. SPIE 1373, 66 (1990).
[CrossRef]

J. Lightwave Technol. (2)

E. Desurvire, J. R. Simpson, J. Lightwave Technol. 7, 835 (1989).
[CrossRef]

W. K. Burns, C. L. Chen, R. P. Moeller, J. Lightwave Technol. 1, 98 (1983).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (3)

P. F. Wysocki, R. F. Kalman, M. J. F. Digonnet, B. Y. Kim, Proc. SPIE 1373, 66 (1990).
[CrossRef]

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, H. J. Shaw, Proc. SPIE 1789, 66 (1993).
[CrossRef]

A. N. Tobin, T. R. Hart, P. Rainbird, W. Johnstone, G. Stewart, B. Culshaw, Proc. SPIE 988, 77 (1989).

Other (2)

J. L. Wagener, “Erbium doped fiber sources and amplifiers for optical sensors,” Ph.D. dissertation (Department of Applied Physics, Stanford University, Stanford, Calif., March1996).

P. R. Morkel, in Optical Fiber Sensors, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, New York, 1989), p. 143.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of (a) a standard SFS with no polarizer, (b) a polarized SFS with an internal polarizer located at the center of the fiber, and (c) a polarized SFS using a single-polarization fiber. || indicates light passing through the polarizer, and ⊥ indicates light attenuated by the polarizer.

Fig. 2
Fig. 2

Simulated backward ASE output power versus pump power for both polarizations in an 80-m fiber for a standard SFS [Fig. 1(a)] and one with a discrete polarizer [Fig. 1(b)].

Fig. 3
Fig. 3

Improvement in the power in the desired backward ASE polarization (figure of merit k) as the polarizer position along the fiber is changed for various fiber lengths. The horizontal line represents the case of a single-polarization Er-doped fiber with the same parameters.

Fig. 4
Fig. 4

Dependence of the k value (forward and backward) on the polarizer extinction ratio for a discrete polarizer positioned in the middle of the fiber. The results for a single-polarization fiber are shown for comparison.

Fig. 5
Fig. 5

Effect of the polarizer insertion loss on the efficiency of the polarized SFS.

Metrics