Abstract

We propose and demonstrate a polarimetric Er3+-doped fiber distributed-feedback laser sensor in which a force applied transversely along the fiber laser induces a birefringence that gives rise to a change in the beat frequency between the two orthogonally polarized laser modes. We measure a sensitivity of ~9.6 GHz/(N/mm), a wide dynamic range with stable two-mode operation for frequency separations up to 50 GHz, and high sensor resolution owing to the narrow beat frequency bandwidth of <10 kHz. The temperature sensitivity is dominated by the temperature dependence of the inherent birefringence, which was measured to be −130 kHz/°C. The sensor permits independent pressure–force and temperature measurements.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Ball, G. Meltz, W. W. Morey, Opt. Lett. 18, 1976 (1993).
    [CrossRef] [PubMed]
  2. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, D. N. Payne, Opt. Lett. 19, 2101 (1994).
    [CrossRef] [PubMed]
  3. J. T. Kringlebotn, “Fiber optic endpumped fiber-laser,”Norwegian patent application 951052 (March20, 1995).
  4. V. J. Mazurczyk, J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994).
    [CrossRef]
  5. S. C. Rashleigh, J. Lightwave Technol. LT-1, 312 (1983).
    [CrossRef]
  6. W. H. Loh, R. I. Laming, Electron. Lett. 31, 1440 (1995).
    [CrossRef]

1995 (1)

W. H. Loh, R. I. Laming, Electron. Lett. 31, 1440 (1995).
[CrossRef]

1994 (2)

1993 (1)

1983 (1)

S. C. Rashleigh, J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

Archambault, J.-L.

Ball, G. A.

Kringlebotn, J. T.

J. T. Kringlebotn, J.-L. Archambault, L. Reekie, D. N. Payne, Opt. Lett. 19, 2101 (1994).
[CrossRef] [PubMed]

J. T. Kringlebotn, “Fiber optic endpumped fiber-laser,”Norwegian patent application 951052 (March20, 1995).

Laming, R. I.

W. H. Loh, R. I. Laming, Electron. Lett. 31, 1440 (1995).
[CrossRef]

Loh, W. H.

W. H. Loh, R. I. Laming, Electron. Lett. 31, 1440 (1995).
[CrossRef]

Mazurczyk, V. J.

V. J. Mazurczyk, J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994).
[CrossRef]

Meltz, G.

Morey, W. W.

Payne, D. N.

Rashleigh, S. C.

S. C. Rashleigh, J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

Reekie, L.

Zyskind, J. L.

V. J. Mazurczyk, J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994).
[CrossRef]

Electron. Lett. (1)

W. H. Loh, R. I. Laming, Electron. Lett. 31, 1440 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. J. Mazurczyk, J. L. Zyskind, IEEE Photon. Technol. Lett. 6, 616 (1994).
[CrossRef]

J. Lightwave Technol. (1)

S. C. Rashleigh, J. Lightwave Technol. LT-1, 312 (1983).
[CrossRef]

Opt. Lett. (2)

Other (1)

J. T. Kringlebotn, “Fiber optic endpumped fiber-laser,”Norwegian patent application 951052 (March20, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration. ISO, isolator.

Fig. 2
Fig. 2

Measured electrical beat frequency as a function of applied transverse force along the two fiber polarization eigenaxes (θ = 0° and θ = 90°) of a 3.5-cm-long Er3+-doped fiber DFB laser. The solid lines are theoretical curves.

Fig. 3
Fig. 3

Optical spectrum of a 3.5-cm fiber DFB laser with increasing transverse force, as measured with a fiber Fabry–Perot filter with a 3-dB bandwidth of 3 GHz. The frequency is shown on a relative scale.

Fig. 4
Fig. 4

Simultaneously measured electrical polarization beat frequency and change in average laser frequency of (10-cm) fiber DFB laser as a function of temperature (without an applied transverse force).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = 2 B Λ = λ x , y ( B / n x , y ) ,
B f = ( 4 C f ) / ( π r ) ,
δ ( Δ ν ) δ T = ( 1 B δ B δ T + α ) Δ ν ,

Metrics