Abstract

We demonstrate experimentally and describe analytically two important noise contributions in saturated semiconductor optical amplifiers. The first is spontaneous emission power enhancement that is due to the increased and spatially dependent inversion factor. The second is caused by a nonlinear interaction between the saturating signal and the amplifier noise that, in the optical domain, causes a distinct modification of the noise spectrum over a narrow bandwidth. This modification manifests itself as a noise power decrease in the detected electronic domain.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, Electron. Lett. 28, 1714 (1992).
    [CrossRef]
  2. R. Schnabel, W. Pieper, M. Ehrhardt, M. Eiselt, H. G. Weber, Electron. Lett. 29, 2047 (1993).
    [CrossRef]
  3. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, New York, 1994), Chap. 2.
  4. J. C. Simone, J. Opt. Commun. 4, 51 (1983).
    [CrossRef]
  5. T. Mukai, Y. Yamamoto, IEEE J. Quantum Electron. QE-18, 564 (1982).
    [CrossRef]
  6. A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
    [CrossRef]
  7. M. Shtaif, G. Eisenstein, IEEE J. Quantum Electron. 32, 1801.
  8. A. P. Bogatov, P. G. Eliseev, B. N. Sverdlov, IEEE J. Quantum Electron. QE-11, 510 (1975).
    [CrossRef]

1995

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

1993

R. Schnabel, W. Pieper, M. Ehrhardt, M. Eiselt, H. G. Weber, Electron. Lett. 29, 2047 (1993).
[CrossRef]

1992

B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, Electron. Lett. 28, 1714 (1992).
[CrossRef]

1983

J. C. Simone, J. Opt. Commun. 4, 51 (1983).
[CrossRef]

1982

T. Mukai, Y. Yamamoto, IEEE J. Quantum Electron. QE-18, 564 (1982).
[CrossRef]

1975

A. P. Bogatov, P. G. Eliseev, B. N. Sverdlov, IEEE J. Quantum Electron. QE-11, 510 (1975).
[CrossRef]

1801

M. Shtaif, G. Eisenstein, IEEE J. Quantum Electron. 32, 1801.

Bogatov, A. P.

A. P. Bogatov, P. G. Eliseev, B. N. Sverdlov, IEEE J. Quantum Electron. QE-11, 510 (1975).
[CrossRef]

D’Ottavi, A.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

Dall’Ara, R.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, New York, 1994), Chap. 2.

Eckner, J.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

Ehrhardt, M.

R. Schnabel, W. Pieper, M. Ehrhardt, M. Eiselt, H. G. Weber, Electron. Lett. 29, 2047 (1993).
[CrossRef]

Eiselt, M.

R. Schnabel, W. Pieper, M. Ehrhardt, M. Eiselt, H. G. Weber, Electron. Lett. 29, 2047 (1993).
[CrossRef]

Eisenstein, G.

M. Shtaif, G. Eisenstein, IEEE J. Quantum Electron. 32, 1801.

Eliseev, P. G.

A. P. Bogatov, P. G. Eliseev, B. N. Sverdlov, IEEE J. Quantum Electron. QE-11, 510 (1975).
[CrossRef]

Glance, B.

B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, Electron. Lett. 28, 1714 (1992).
[CrossRef]

Gnauck, A. H.

B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, Electron. Lett. 28, 1714 (1992).
[CrossRef]

Guekos, G.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

Iannone, E.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

Jourdan, A.

B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, Electron. Lett. 28, 1714 (1992).
[CrossRef]

Koren, U.

B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, Electron. Lett. 28, 1714 (1992).
[CrossRef]

Mecozzi, A.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

Mukai, T.

T. Mukai, Y. Yamamoto, IEEE J. Quantum Electron. QE-18, 564 (1982).
[CrossRef]

Pieper, W.

R. Schnabel, W. Pieper, M. Ehrhardt, M. Eiselt, H. G. Weber, Electron. Lett. 29, 2047 (1993).
[CrossRef]

Presby, H. M.

B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, Electron. Lett. 28, 1714 (1992).
[CrossRef]

Schnabel, R.

R. Schnabel, W. Pieper, M. Ehrhardt, M. Eiselt, H. G. Weber, Electron. Lett. 29, 2047 (1993).
[CrossRef]

Scotti, S.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

Shtaif, M.

M. Shtaif, G. Eisenstein, IEEE J. Quantum Electron. 32, 1801.

Simone, J. C.

J. C. Simone, J. Opt. Commun. 4, 51 (1983).
[CrossRef]

Spano, P.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

Sverdlov, B. N.

A. P. Bogatov, P. G. Eliseev, B. N. Sverdlov, IEEE J. Quantum Electron. QE-11, 510 (1975).
[CrossRef]

Weber, H. G.

R. Schnabel, W. Pieper, M. Ehrhardt, M. Eiselt, H. G. Weber, Electron. Lett. 29, 2047 (1993).
[CrossRef]

Wiesenfeld, J. M.

B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, Electron. Lett. 28, 1714 (1992).
[CrossRef]

Yamamoto, Y.

T. Mukai, Y. Yamamoto, IEEE J. Quantum Electron. QE-18, 564 (1982).
[CrossRef]

Electron. Lett.

B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby, A. Jourdan, Electron. Lett. 28, 1714 (1992).
[CrossRef]

R. Schnabel, W. Pieper, M. Ehrhardt, M. Eiselt, H. G. Weber, Electron. Lett. 29, 2047 (1993).
[CrossRef]

IEEE J. Quantum Electron.

T. Mukai, Y. Yamamoto, IEEE J. Quantum Electron. QE-18, 564 (1982).
[CrossRef]

M. Shtaif, G. Eisenstein, IEEE J. Quantum Electron. 32, 1801.

A. P. Bogatov, P. G. Eliseev, B. N. Sverdlov, IEEE J. Quantum Electron. QE-11, 510 (1975).
[CrossRef]

IEEE Photon. Technol. Lett.

A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, R. Dall’Ara, J. Eckner, G. Guekos, IEEE Photon. Technol. Lett. 7, 357 (1995).
[CrossRef]

J. Opt. Commun.

J. C. Simone, J. Opt. Commun. 4, 51 (1983).
[CrossRef]

Other

E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, New York, 1994), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Calculated PDS of (a) the output signal in the optical domain and (b) the electronically detected signal. The amplifier small-signal gain in the calculations is 23 dB; α = 5, τ = 400 ps.

Fig. 2
Fig. 2

Experimental setup: Pol, polarizer, ATT, variable attenuator; P’s, powermeters; BS, beam splitter; SOA, semiconductor optical amplifier.

Fig. 3
Fig. 3

Electronically measured PDS in the range of 0.5–2 GHz for several levels of gain saturation. The theoretical prediction is described by the dashed curve.

Fig. 4
Fig. 4

Gain, output ASE power, and noise PDS of a saturating signal normalized to its output power. (a) theory, (b) experiment.

Fig. 5
Fig. 5

Measurements of the ASE power and the normalized PDS of a weak signal in the presence of an intense, saturating field. The PDS is normalized to the signal output power.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S δ E ( f ) = G ( S M 1 + S ɛ 0 ) + 1 + α 2 2 G A ( f ) 2 × [ ( S M 1 + S ɛ 0 ) ( G - 1 ) 2 - 2 S M 1 M 2 ( G - 1 ) + S M 2 ] - G A ( f ) 2 1 + G P 0 + 2 π α f τ P 0 × [ ( S M 1 + S ɛ 0 ) ( G - 1 ) - S M 1 M 2 ] .
S E 2 ( f ) = 2 P 0 P sat G 2 [ 1 - ( G - 1 ) A ( f ) 2 ( S M 1 + S ɛ 0 ) + A ( f ) 2 S M 2 + 2 1 + P 0 P 0 A ( f ) 2 S M 1 M 2 ] .
S M 1 = ω 0 [ a N 0 + g 0 g 0 ( 1 - G - 1 ) + a N 0 P 0 g 0 L n ( G ) ] ,
S M 2 = ω 0 [ a N 0 + g 0 g 0 ( G - G - 1 ) + a N 0 P 0 2 g 0 × [ 2 L n ( G ) + G 2 - 1 ] - 2 [ L n ( G ) + a N 0 L ] ] ,
S M 1 M 2 = ω 0 [ L n ( G ) ( 1 + a N 0 P 0 g 0 ) - a N 0 + g 0 g 0 ( 1 - G - 1 ) + a N 0 L ] ,
A ( f ) = P 0 1 + G P 0 - i 2 π f τ ,

Metrics