Abstract

A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry–Perot étalon. The modulation frequency FM and the frequency shift FAO that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and FAO is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kuboki, M. Ohtsu, IEEE J. Quantum Electron. 23, 388 (1987).
    [CrossRef]
  2. K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, J. F. Weller, Electron. Lett. 25, 1242 (1989).
    [CrossRef]
  3. J. Harrison, A. Mooradian, IEEE J. Quantum Electron. 25, 1152 (1989).
    [CrossRef]
  4. O. Ishida, H. Toba, J. Lightwave Technol. 9, 1344 (1991).
    [CrossRef]
  5. T. Kobayashi, T. Sueta, Y. Cho, M. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
    [CrossRef]
  6. M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
    [CrossRef]
  7. P. Coppin, T. G. Hodgkinson, Electron. Lett. 26, 28 (1990).
    [CrossRef]
  8. T. G. Hodgkinson, P. Coppin, Electron. Lett. 26, 1155 (1990).
    [CrossRef]
  9. P. Jessen, M. Kristensen, Appl. Opt. 31, 4911 (1992).
    [CrossRef] [PubMed]
  10. K. Shimizu, T. Horiguchi, Y. Koyamada, Appl. Opt. 32, 6718 (1993).
    [CrossRef] [PubMed]
  11. K. Shimizu, Y. Sakai, T. Horiguchi, Y. Koyamada, IEEE J. Quantum Electron. 31, 1038 (1995).
    [CrossRef]
  12. Y. Sakaii, I. Yokohama, F. Kano, S. Sudo, IEEE Photon. Technol. Lett. 4, 961 (1992).
    [CrossRef]

1995

K. Shimizu, Y. Sakai, T. Horiguchi, Y. Koyamada, IEEE J. Quantum Electron. 31, 1038 (1995).
[CrossRef]

1993

K. Shimizu, T. Horiguchi, Y. Koyamada, Appl. Opt. 32, 6718 (1993).
[CrossRef] [PubMed]

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

1992

P. Jessen, M. Kristensen, Appl. Opt. 31, 4911 (1992).
[CrossRef] [PubMed]

Y. Sakaii, I. Yokohama, F. Kano, S. Sudo, IEEE Photon. Technol. Lett. 4, 961 (1992).
[CrossRef]

1991

O. Ishida, H. Toba, J. Lightwave Technol. 9, 1344 (1991).
[CrossRef]

1990

P. Coppin, T. G. Hodgkinson, Electron. Lett. 26, 28 (1990).
[CrossRef]

T. G. Hodgkinson, P. Coppin, Electron. Lett. 26, 1155 (1990).
[CrossRef]

1989

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

J. Harrison, A. Mooradian, IEEE J. Quantum Electron. 25, 1152 (1989).
[CrossRef]

1987

K. Kuboki, M. Ohtsu, IEEE J. Quantum Electron. 23, 388 (1987).
[CrossRef]

1972

T. Kobayashi, T. Sueta, Y. Cho, M. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Cho, Y.

T. Kobayashi, T. Sueta, Y. Cho, M. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Coppin, P.

T. G. Hodgkinson, P. Coppin, Electron. Lett. 26, 1155 (1990).
[CrossRef]

P. Coppin, T. G. Hodgkinson, Electron. Lett. 26, 28 (1990).
[CrossRef]

Dagenais, M.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

Esman, R. D.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

Goldberg, L.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

Harrison, J.

J. Harrison, A. Mooradian, IEEE J. Quantum Electron. 25, 1152 (1989).
[CrossRef]

Hodgkinson, T. G.

P. Coppin, T. G. Hodgkinson, Electron. Lett. 26, 28 (1990).
[CrossRef]

T. G. Hodgkinson, P. Coppin, Electron. Lett. 26, 1155 (1990).
[CrossRef]

Horiguchi, T.

K. Shimizu, Y. Sakai, T. Horiguchi, Y. Koyamada, IEEE J. Quantum Electron. 31, 1038 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, Appl. Opt. 32, 6718 (1993).
[CrossRef] [PubMed]

Ishida, O.

O. Ishida, H. Toba, J. Lightwave Technol. 9, 1344 (1991).
[CrossRef]

Jessen, P.

Kano, F.

Y. Sakaii, I. Yokohama, F. Kano, S. Sudo, IEEE Photon. Technol. Lett. 4, 961 (1992).
[CrossRef]

Kobayashi, T.

T. Kobayashi, T. Sueta, Y. Cho, M. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Kourogi, M.

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Koyamada, Y.

K. Shimizu, Y. Sakai, T. Horiguchi, Y. Koyamada, IEEE J. Quantum Electron. 31, 1038 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, Appl. Opt. 32, 6718 (1993).
[CrossRef] [PubMed]

Kristensen, M.

Kuboki, K.

K. Kuboki, M. Ohtsu, IEEE J. Quantum Electron. 23, 388 (1987).
[CrossRef]

Matsuo, M.

T. Kobayashi, T. Sueta, Y. Cho, M. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Mooradian, A.

J. Harrison, A. Mooradian, IEEE J. Quantum Electron. 25, 1152 (1989).
[CrossRef]

Nakagawa, K.

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

Ohtsu, M.

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

K. Kuboki, M. Ohtsu, IEEE J. Quantum Electron. 23, 388 (1987).
[CrossRef]

Sakai, Y.

K. Shimizu, Y. Sakai, T. Horiguchi, Y. Koyamada, IEEE J. Quantum Electron. 31, 1038 (1995).
[CrossRef]

Sakaii, Y.

Y. Sakaii, I. Yokohama, F. Kano, S. Sudo, IEEE Photon. Technol. Lett. 4, 961 (1992).
[CrossRef]

Shimizu, K.

K. Shimizu, Y. Sakai, T. Horiguchi, Y. Koyamada, IEEE J. Quantum Electron. 31, 1038 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, Appl. Opt. 32, 6718 (1993).
[CrossRef] [PubMed]

Sudo, S.

Y. Sakaii, I. Yokohama, F. Kano, S. Sudo, IEEE Photon. Technol. Lett. 4, 961 (1992).
[CrossRef]

Sueta, T.

T. Kobayashi, T. Sueta, Y. Cho, M. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Toba, H.

O. Ishida, H. Toba, J. Lightwave Technol. 9, 1344 (1991).
[CrossRef]

Weller, J. F.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

Williams, K. J.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

Yokohama, I.

Y. Sakaii, I. Yokohama, F. Kano, S. Sudo, IEEE Photon. Technol. Lett. 4, 961 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Kobayashi, T. Sueta, Y. Cho, M. Matsuo, Appl. Phys. Lett. 21, 341 (1972).
[CrossRef]

Electron. Lett.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

P. Coppin, T. G. Hodgkinson, Electron. Lett. 26, 28 (1990).
[CrossRef]

T. G. Hodgkinson, P. Coppin, Electron. Lett. 26, 1155 (1990).
[CrossRef]

IEEE J. Quantum Electron.

K. Kuboki, M. Ohtsu, IEEE J. Quantum Electron. 23, 388 (1987).
[CrossRef]

J. Harrison, A. Mooradian, IEEE J. Quantum Electron. 25, 1152 (1989).
[CrossRef]

M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693 (1993).
[CrossRef]

K. Shimizu, Y. Sakai, T. Horiguchi, Y. Koyamada, IEEE J. Quantum Electron. 31, 1038 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Sakaii, I. Yokohama, F. Kano, S. Sudo, IEEE Photon. Technol. Lett. 4, 961 (1992).
[CrossRef]

J. Lightwave Technol.

O. Ishida, H. Toba, J. Lightwave Technol. 9, 1344 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic configuration of the phase-modulation active optical feedback ring for absolute frequency synthesis.

Fig. 2
Fig. 2

Schematic diagrams of the frequency spectra of a light-wave pulse propagating around the ring.

Fig. 3
Fig. 3

Experimental configuration of the phase-modulation active optical feedback ring using fiber-optic components.

Fig. 4
Fig. 4

Monitored output profiles of the recirculated pulse trains: (a) minus frequency-shift direction, (b) plus frequency-shift direction.

Fig. 5
Fig. 5

Measured optical wavelength spectra of extracted pulses for circulation numbers of 0, 10, 20, and 30: (a) minus frequency-shift direction, ( b) plus frequency-shift direction.

Metrics