Abstract

Nonreciprocal intensity transmission in optical fibers can be realized by use of an asymmetric fiber taper. A few-mode fiber taper-based nonreciprocal component is designed, and its nonreciprocal transmission characteristics are demonstrated. This structure can be employed to build polarization-independent all-fiber isolators or fiber-optic sensors.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. W. Chang, W. V. Sorin, IEEE Photon. Technol. Lett. 1, 68 (1989).
    [CrossRef]
  2. Y. Fujii, J. Lightwave Technol. 10, 1226 (1992).
    [CrossRef]
  3. K. Shiraishi, T. Chuzenji, S. Kawakami, J. Lightwave Technol. 10, 1839 (1992).
    [CrossRef]
  4. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  5. X. Fang, A. Wang, R. G. May, R. O. Claus, J. Lightwave Technol. 12, 1882 (1994).
    [CrossRef]
  6. L. C. Bobb, H. D. Krumboltz, P. M. Shankar, Opt. Lett. 16, 112 (1991).
    [CrossRef] [PubMed]
  7. L. C. Bobb, P. M. Shankar, H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
    [CrossRef]

1994 (1)

X. Fang, A. Wang, R. G. May, R. O. Claus, J. Lightwave Technol. 12, 1882 (1994).
[CrossRef]

1992 (2)

Y. Fujii, J. Lightwave Technol. 10, 1226 (1992).
[CrossRef]

K. Shiraishi, T. Chuzenji, S. Kawakami, J. Lightwave Technol. 10, 1839 (1992).
[CrossRef]

1991 (1)

1990 (1)

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

1989 (1)

K. W. Chang, W. V. Sorin, IEEE Photon. Technol. Lett. 1, 68 (1989).
[CrossRef]

Bobb, L. C.

L. C. Bobb, H. D. Krumboltz, P. M. Shankar, Opt. Lett. 16, 112 (1991).
[CrossRef] [PubMed]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

Chang, K. W.

K. W. Chang, W. V. Sorin, IEEE Photon. Technol. Lett. 1, 68 (1989).
[CrossRef]

Chuzenji, T.

K. Shiraishi, T. Chuzenji, S. Kawakami, J. Lightwave Technol. 10, 1839 (1992).
[CrossRef]

Claus, R. O.

X. Fang, A. Wang, R. G. May, R. O. Claus, J. Lightwave Technol. 12, 1882 (1994).
[CrossRef]

Fang, X.

X. Fang, A. Wang, R. G. May, R. O. Claus, J. Lightwave Technol. 12, 1882 (1994).
[CrossRef]

Fujii, Y.

Y. Fujii, J. Lightwave Technol. 10, 1226 (1992).
[CrossRef]

Kawakami, S.

K. Shiraishi, T. Chuzenji, S. Kawakami, J. Lightwave Technol. 10, 1839 (1992).
[CrossRef]

Krumboltz, H. D.

L. C. Bobb, H. D. Krumboltz, P. M. Shankar, Opt. Lett. 16, 112 (1991).
[CrossRef] [PubMed]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

May, R. G.

X. Fang, A. Wang, R. G. May, R. O. Claus, J. Lightwave Technol. 12, 1882 (1994).
[CrossRef]

Shankar, P. M.

L. C. Bobb, H. D. Krumboltz, P. M. Shankar, Opt. Lett. 16, 112 (1991).
[CrossRef] [PubMed]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

Shiraishi, K.

K. Shiraishi, T. Chuzenji, S. Kawakami, J. Lightwave Technol. 10, 1839 (1992).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Sorin, W. V.

K. W. Chang, W. V. Sorin, IEEE Photon. Technol. Lett. 1, 68 (1989).
[CrossRef]

Wang, A.

X. Fang, A. Wang, R. G. May, R. O. Claus, J. Lightwave Technol. 12, 1882 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. W. Chang, W. V. Sorin, IEEE Photon. Technol. Lett. 1, 68 (1989).
[CrossRef]

J. Lightwave Technol. (4)

Y. Fujii, J. Lightwave Technol. 10, 1226 (1992).
[CrossRef]

K. Shiraishi, T. Chuzenji, S. Kawakami, J. Lightwave Technol. 10, 1839 (1992).
[CrossRef]

X. Fang, A. Wang, R. G. May, R. O. Claus, J. Lightwave Technol. 12, 1882 (1994).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, J. Lightwave Technol. 8, 1084 (1990).
[CrossRef]

Opt. Lett. (1)

Other (1)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of a few-mode fiber taper-based non-reciprocal device: SMF’s, single-mode fibers; FMF, few-mode fiber.

Fig. 2
Fig. 2

Dependence of intensity transmission scaling quantities T+ and T on phase modulation for (a) φ1 = 0 and (b) φ1 = π.

Fig. 3
Fig. 3

Experimental setup for testing the nonreciprocal intensity transmission. D1 and D2 are two photodetectors.

Fig. 4
Fig. 4

Output intensity response to periodic taper bending under various coupling conditions.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

C i , j = E i ( r ) Φ j ( r ) d S / | Φ j ( r ) | 2 d S ,
E + = [ C 11 + C 12 exp ( j φ 2 ) ] E LP 01 + [ C 21 + C 22 exp ( j φ 2 ) ] exp ( j φ 1 ) E LP 02 ,
E = [ C 11 + C 21 exp ( j φ 1 ) ] E HE 11 + [ C 12 + C 22 exp ( j φ 1 ) ] exp ( j φ 2 ) E HE 12 ,
T + = [ C 11 + C 12 exp ( j φ 2 ) ] + [ C 12 + C 22 exp ( j φ 2 ) ] exp ( j φ 1 ) ,
T = [ C 11 + C 21 exp ( j φ 1 ) ] + [ C 12 + C 22 exp ( j φ 1 ) ] exp ( j φ 2 ) .
φ 1 φ 2 = ( 2 m + 1 ) π ( nonreciprocal )   ,
φ 1 φ 2 = 2 m π ( reciprocal )   ,

Metrics