Abstract

We demonstrate the use of a femtosecond pulse-shaping apparatus for electronically programmable phase filtering of amplified spontaneous emission from an erbium-doped fiber amplifier. Pulse shaping applied to a broadband incoherent light (noise) input results in reshaped noise, with a specially tailored electric field correlation function. Our experiments clearly reveal that phase filtering can strongly affect the coherence properties of broadband, phase-incoherent light.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, J. P. Heritage, E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  2. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
    [CrossRef]
  3. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
    [CrossRef]
  4. M. M. Wefers, K. A. Nelson, Opt. Lett. 20, 1047 (1995).
    [CrossRef] [PubMed]
  5. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, W. S. Warren, Opt. Lett. 19, 737 (1994).
    [CrossRef] [PubMed]
  6. K. G. Purchase, K. B. Hill, M. E. Talbot, D. J. Brady, Opt. Lett. 19, 1107 (1994).
    [PubMed]
  7. R. A. Griffin, D. D. Sampson, D. A. Jackson, IEEE J. Lightwave Technol. 13, 1826 (1995).
    [CrossRef]
  8. H. Soñajalg, A. Débarre, J.-L. L. Gouët, I. Lorgeré, P. Tchénio, J. Opt. Soc. Am. B 12, 1448 (1995).
    [CrossRef]
  9. W. H. Knox, N. M. Pearson, K. D. Li, C. A. Hirlimann, Opt. Lett. 13, 574 (1988).
    [CrossRef] [PubMed]
  10. K. Naganuma, K. Mogi, H. Yamada, Opt. Lett. 15, 393 (1990).
    [CrossRef] [PubMed]
  11. L. Lepetit, G. Cheriaux, M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  12. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, Opt. Lett. 15, 326 (1990).
    [CrossRef] [PubMed]
  13. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, Opt. Lett. 18, 558 (1993).
    [CrossRef] [PubMed]

1995 (5)

1994 (2)

1993 (1)

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

1990 (2)

1988 (2)

Brady, D. J.

Cheriaux, G.

Chu, K. C.

Débarre, A.

Dienes, A.

Goswami, D.

Gouët, J.-L. L.

Griffin, R. A.

R. A. Griffin, D. D. Sampson, D. A. Jackson, IEEE J. Lightwave Technol. 13, 1826 (1995).
[CrossRef]

Heritage, J. P.

Hill, K. B.

Hillegas, C. W.

Hirlimann, C. A.

Jackson, D. A.

R. A. Griffin, D. D. Sampson, D. A. Jackson, IEEE J. Lightwave Technol. 13, 1826 (1995).
[CrossRef]

Joffre, M.

Kirschner, E. M.

Knox, W. H.

Kwong, K. F.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef] [PubMed]

Lepetit, L.

Li, K. D.

Lorgeré, I.

Mogi, K.

Naganuma, K.

Nelson, K. A.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef] [PubMed]

Pearson, N. M.

Purchase, K. G.

Sampson, D. D.

R. A. Griffin, D. D. Sampson, D. A. Jackson, IEEE J. Lightwave Technol. 13, 1826 (1995).
[CrossRef]

Soñajalg, H.

Strickland, D.

Talbot, M. E.

Tchénio, P.

Tull, J. X.

Warren, W. S.

Wefers, M. M.

Weiner, A. M.

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef] [PubMed]

A. M. Weiner, J. P. Heritage, E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, Opt. Lett. 15, 326 (1990).
[CrossRef] [PubMed]

Yamada, H.

Yankelevich, D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic experimental setup: OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

(a) Power spectrum of ASE from the erbium-doped fiber amplifier. (b) Measured electric-field autocorrelation. (c) Calculated autocorrelation function, equal to the Fourier transform of the power spectrum.

Fig. 3
Fig. 3

(a) Electric field cross-correlation measurement of incoherent light spectrally filtered by use of a binary (0, π) phase step. The applied phase pattern is shown in the inset. The horizontal scale on the inset indicates the modulator pixel number. (b) Calculated cross correlation corresponding to (a). (c) Cross correlation measured for a phase function similar to that in (a) but with a phase step going from 0 to ~0.8π.

Fig. 4
Fig. 4

Electric field cross-correlation measurements for gray-level phase patterns corresponding to a linear spectral phase sweep (modulo 2π). (a) Constant phase. (b) π/8 phase change per pixel. (c) π/4 phase change per pixel.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P av ( τ ) = ( 1 / 2 π ) { | E ( ω ˜ ) | 2 + | H ( ω ˜ ) E ( ω ˜ ) | 2 + [ H ( ω ˜ ) | E ( ω ˜ ) | 2 exp ( j ω 0 τ ) + c . c . ] } × exp ( j ω τ ) d ω .
P fringe ( τ ) = ( 1 / 2 π ) [ H ( ω ˜ ) | E ( ω ˜ ) | 2 exp ( j ω 0 τ ) + c . c . ] × exp ( j ω τ ) d ω ,

Metrics