Abstract

The temporal evolution of double phase-conjugate mirrors (DPCM’s) in photorefractive materials such as BaTiO3:Co:Fe is studied by use of the plane-wave expansion method. The buildup time of DPCM and its conjugation fidelity are compared with those of photorefractive materials with a single-center transport. Numerical simulations show that one can decrease the threshold value of the coupling strength required for the DPCM operation with a high conjugation fidelity by doping the BaTiO3 crystals weakly with Co in comparison with undoped crystals.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Fischer, S. Sternkler, S. Weiss, IEEE J. Quantum. Electron. 25, 550 (1989).
    [CrossRef]
  2. A. A. Zozulya, Opt. Lett. 16, 545 (1991).
    [CrossRef] [PubMed]
  3. V. V. Eliseev, V. T. Tikhonchuk, A. A. Zozulya, J. Opt. Soc. Am. B 8, 2497 (1991); A. A. Zozulya, M. Saffman, D. Z. Anderson, J. Opt. Soc. Am. B 12, 255 (1995).
    [CrossRef]
  4. E. Parshall, M. Cronin-Colomb, paper presented at the Photorefractive Materials, Effects and Devices Meeting, June 11–14, Estes Park, Colorado, 1995, p. 257.
  5. K. D. Shaw, Opt. Lett. 20, 1610 (1995).
    [CrossRef] [PubMed]
  6. M. Segev, A. Yariv, Opt. Lett. 16, 1938 (1991); M. Segev, D. Engin, A. Yariv, G. C. Valley, Opt. Lett. 18, 956 (1993); M. Segev, D. Engin, A. Yariv, G. C. Valley, Opt. Lett. 18, 1828 (1993).
    [CrossRef] [PubMed]
  7. G. C. Valley, J. Opt. Soc. Am. B 9, 1440 (1992).
    [CrossRef]
  8. D. Engin, M. Sergev, S. Orlov, A. Yariv, G. C. Valley, J. Opt. Soc. Am. B 11, 1708 (1994).
    [CrossRef]
  9. S. Zhivkova, M. Miteva, J. Appl. Phys. 68, 3099 (1990).
    [CrossRef]
  10. R. S. Rana, D. D. Nolte, R. Steldt, E. M. Monberg, J. Opt. Soc. Am. B 9, 1614 (1992).
    [CrossRef]
  11. P. Tayebati, D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).
    [CrossRef]
  12. C. Özkul, S. Jamet, submitted to J. Opt. Soc. Am. B.
  13. M. C. Bashaw, M. Jeganathan, L. Hesselink, J. Opt. Soc. Am. B 11, 1743 (1994).
    [CrossRef]
  14. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, J. Opt. Soc. Am. B 7, 2329 (1990); M. C. Bashaw, T.-P. Ma, R. C. Barker, J. Opt. Soc. Am. B 9, 1666 (1992).
    [CrossRef]
  15. M. Segev, Y. Ophir, B. Fischer, Opt. Commun. 77, 265 (1990).
    [CrossRef]
  16. T. Lu, P. Neittaanmäki, X.-C. Tai, Math. Mod. Numer. Anal. 26, 673 (1992).

1995 (1)

1994 (2)

1992 (3)

1991 (4)

1990 (3)

1989 (1)

B. Fischer, S. Sternkler, S. Weiss, IEEE J. Quantum. Electron. 25, 550 (1989).
[CrossRef]

Barker, R. C.

Bashaw, M. C.

Cronin-Colomb, M.

E. Parshall, M. Cronin-Colomb, paper presented at the Photorefractive Materials, Effects and Devices Meeting, June 11–14, Estes Park, Colorado, 1995, p. 257.

Eliseev, V. V.

Engin, D.

Fischer, B.

M. Segev, Y. Ophir, B. Fischer, Opt. Commun. 77, 265 (1990).
[CrossRef]

B. Fischer, S. Sternkler, S. Weiss, IEEE J. Quantum. Electron. 25, 550 (1989).
[CrossRef]

Hesselink, L.

Jamet, S.

C. Özkul, S. Jamet, submitted to J. Opt. Soc. Am. B.

Jeganathan, M.

Lu, T.

T. Lu, P. Neittaanmäki, X.-C. Tai, Math. Mod. Numer. Anal. 26, 673 (1992).

Ma, T.-P.

Mahgerefteh, D.

Miteva, M.

S. Zhivkova, M. Miteva, J. Appl. Phys. 68, 3099 (1990).
[CrossRef]

Monberg, E. M.

Mroczkowski, S.

Neittaanmäki, P.

T. Lu, P. Neittaanmäki, X.-C. Tai, Math. Mod. Numer. Anal. 26, 673 (1992).

Nolte, D. D.

Ophir, Y.

M. Segev, Y. Ophir, B. Fischer, Opt. Commun. 77, 265 (1990).
[CrossRef]

Orlov, S.

Özkul, C.

C. Özkul, S. Jamet, submitted to J. Opt. Soc. Am. B.

Parshall, E.

E. Parshall, M. Cronin-Colomb, paper presented at the Photorefractive Materials, Effects and Devices Meeting, June 11–14, Estes Park, Colorado, 1995, p. 257.

Rana, R. S.

Segev, M.

Sergev, M.

Shaw, K. D.

Steldt, R.

Sternkler, S.

B. Fischer, S. Sternkler, S. Weiss, IEEE J. Quantum. Electron. 25, 550 (1989).
[CrossRef]

Tai, X.-C.

T. Lu, P. Neittaanmäki, X.-C. Tai, Math. Mod. Numer. Anal. 26, 673 (1992).

Tayebati, P.

Tikhonchuk, V. T.

Valley, G. C.

Weiss, S.

B. Fischer, S. Sternkler, S. Weiss, IEEE J. Quantum. Electron. 25, 550 (1989).
[CrossRef]

Yariv, A.

Zhivkova, S.

S. Zhivkova, M. Miteva, J. Appl. Phys. 68, 3099 (1990).
[CrossRef]

Zozulya, A. A.

IEEE J. Quantum. Electron. (1)

B. Fischer, S. Sternkler, S. Weiss, IEEE J. Quantum. Electron. 25, 550 (1989).
[CrossRef]

J. Appl. Phys. (1)

S. Zhivkova, M. Miteva, J. Appl. Phys. 68, 3099 (1990).
[CrossRef]

J. Opt. Soc. Am. B (7)

Math. Mod. Numer. Anal. (1)

T. Lu, P. Neittaanmäki, X.-C. Tai, Math. Mod. Numer. Anal. 26, 673 (1992).

Opt. Commun. (1)

M. Segev, Y. Ophir, B. Fischer, Opt. Commun. 77, 265 (1990).
[CrossRef]

Opt. Lett. (3)

Other (2)

C. Özkul, S. Jamet, submitted to J. Opt. Soc. Am. B.

E. Parshall, M. Cronin-Colomb, paper presented at the Photorefractive Materials, Effects and Devices Meeting, June 11–14, Estes Park, Colorado, 1995, p. 257.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Configuration of the DPCM: Each input beam consists of five plane waves. CA, components of the input beam A; CB, components of the input beam B.

Fig. 2
Fig. 2

Temporal evolution of the CF for undoped BaTiO3 crystals: (a) N = 1016 cm−3, Nv = 0.5 × 1016 cm−3, and doped BaTiO3 crystals; (b) N = 1016 cm−3, M = 1016 cm−3, Nv = 0.2 × 1016 cm−3, Mv = 0.15 × 1016 cm−3; (c) N = 1018 cm−3, M = 1017 cm−3, Nv = 0.70 × 1018 cm−3, Mv = 0.5 × 1017 cm−3; (d) N = 1018 cm−3, M = 1017 cm−3, Nv = 0.67 1018 cm−3, Mv = 0.5 × 1017 cm−3. The crystal length is L = 5 mm.

Fig. 3
Fig. 3

Steady-state CF as a function of the coupling coefficient (γ): (a) N = 1018 cm−3 and Nv lies in the range [0.71, 0.76] 1018 cm−3; (b) N = 1016 cm−3, M = 1016 cm−3, Nv = [0.15, 0.3] 1016 cm−3, Mv = [0.1, 0.25] 1016 cm−3; (c) N = 1016 cm−3, Nv = [0.5, 0.58] 1016 cm−3; (d) N = 1018 cm−3, M = 1017 cm−3, Nv = [0.65, 0.7] 1018 cm−3, Mv = 0.5 × 1017 cm−3; (e) N = 1017 cm−3, M = 1018 cm−3, Nv = [0.3, 0.5] 1017 cm−3, Mv = [0.45, 0.75] 1018 cm−3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( x , z , t ) = ( 1 / 2 ) [ A ( x , z , t ) exp ( i k z i ω t ) + B ( x , z , t ) exp ( i k z i ω t ) + c . c . ] x ,
A ( x , z , t ) = m a m ( z , t ) exp [ ik mx ik 2 m 2 z 2 + α z 2 ] ,
B ( x , z , t ) = m b m ( z , t ) exp [ ik mx + ik 2 m 2 z 2 α z 2 ] ,
α m ( z , t ) z + α a m ( z , t ) = ik n 0 n a n ( z , t ) δ n mn ( z , t ) ,
b m ( z , t ) z α b m ( z , t ) = ik n 0 n b n ( z , t ) δ n nm ( z , t ) ,
δ n m n = ½ n 0 3 r m n E m n ,

Metrics