Abstract

A demonstration of an optical parametric oscillator and a high-gain laser element operating simultaneously in a common cavity is presented. In such a cavity the signal photons are amplified both in the gain medium and in the nonlinear crystal, whereas the idler photons are generated only in the crystal. The high gain in the laser element reduces the pump threshold for the parametric oscillations. This combined configuration is an efficient, compact design that permits the construction of a tunable source with low pump threshold and narrow linewidth, attained by a wavelength-selective element in the cavity.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, Proc. IEEE 57, 2096 (1969).
    [CrossRef]
  2. H. L. Tang, W. R. Bosenberg, T. Kachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
    [CrossRef]
  3. J. E. Bjorkholm, H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
    [CrossRef]
  4. J. G. Haub, M. J. Johnson, B. J. Orr, Appl. Phys. Lett. 58, 1718 (1991).
    [CrossRef]
  5. J. G. Haub, R. M. Hentchel, M. J. Jonson, B. J. Orr, J. Opt. Soc. Am. B 12, 2128 (1995).
    [CrossRef]
  6. R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
    [CrossRef]
  7. L. A. W. Gloster, I. T. McKinnie, Z. X. Jiang, T. A. King, J. M. Boon-Engering, W. E. van der Veer, W. Hogervorst, J. Opt. Soc. Am. B 12, 2117 (1995).
    [CrossRef]
  8. R. Lavi, A. Englander, R. Lallouz, Opt. Lett. 21, 800 (1996).
    [CrossRef] [PubMed]

1996

1995

1993

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

1992

H. L. Tang, W. R. Bosenberg, T. Kachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

1991

J. G. Haub, M. J. Johnson, B. J. Orr, Appl. Phys. Lett. 58, 1718 (1991).
[CrossRef]

1969

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

J. E. Bjorkholm, H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
[CrossRef]

Allik, T. H.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
[CrossRef]

Boon-Engering, J. M.

Bosenberg, W. R.

H. L. Tang, W. R. Bosenberg, T. Kachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Chandra, S.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

Cheng, L. K.

H. L. Tang, W. R. Bosenberg, T. Kachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Danielmeyer, H. G.

J. E. Bjorkholm, H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
[CrossRef]

Englander, A.

Gloster, L. A. W.

Harris, S. E.

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

Haub, J. G.

J. G. Haub, R. M. Hentchel, M. J. Jonson, B. J. Orr, J. Opt. Soc. Am. B 12, 2128 (1995).
[CrossRef]

J. G. Haub, M. J. Johnson, B. J. Orr, Appl. Phys. Lett. 58, 1718 (1991).
[CrossRef]

Hentchel, R. M.

Hermes, R. E.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

Hogervorst, W.

Hutchinson, J. A.

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

Jiang, Z. X.

Johnson, M. J.

J. G. Haub, M. J. Johnson, B. J. Orr, Appl. Phys. Lett. 58, 1718 (1991).
[CrossRef]

Jonson, M. J.

Kachi, T.

H. L. Tang, W. R. Bosenberg, T. Kachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

King, T. A.

Lallouz, R.

Lane, R. J.

H. L. Tang, W. R. Bosenberg, T. Kachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Lavi, R.

McKinnie, I. T.

Orr, B. J.

J. G. Haub, R. M. Hentchel, M. J. Jonson, B. J. Orr, J. Opt. Soc. Am. B 12, 2128 (1995).
[CrossRef]

J. G. Haub, M. J. Johnson, B. J. Orr, Appl. Phys. Lett. 58, 1718 (1991).
[CrossRef]

Tang, H. L.

H. L. Tang, W. R. Bosenberg, T. Kachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

van der Veer, W. E.

Appl. Phys. Lett.

J. E. Bjorkholm, H. G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969).
[CrossRef]

J. G. Haub, M. J. Johnson, B. J. Orr, Appl. Phys. Lett. 58, 1718 (1991).
[CrossRef]

R. E. Hermes, T. H. Allik, S. Chandra, J. A. Hutchinson, Appl. Phys. Lett. 63, 877 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Proc. IEEE

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

H. L. Tang, W. R. Bosenberg, T. Kachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic layout of the combined OPO–laser-gain element configuration with a common cavity on the signal wavelength.

Fig. 2
Fig. 2

Optical layout of the experimental OPO–dye system. M1–M3 are dielectric mirrors. The cavity is in a folded geometry with a grazing-incidence grating, highly efficient for first-order ref lection. The signal oscillates between M2 and the tuning mirror.

Fig. 3
Fig. 3

Line-shape analysis of the signal measured by a Fabry–Perot étalon: (a) narrow-linewidth common cavity OPO–dye system, (b) free-running KTP OPO.

Fig. 4
Fig. 4

Output energy of the idler as a function of the dye pump energy for different OPO pump levels.

Metrics