Abstract

The transmittance of polymer-dispersed liquid crystals (PDLC’s) can be easily controlled by a low-frequency electric field. However, unlike glass, even in its transparent state a PDLC is an anisotropic material, so its transmittance has a characteristic angular dependence. We introduce a mathematical model to describe the angular dependence of the light transmittance through a PDLC sample above threshold. The accuracy of the model is tested and predictions compared with experimental measurements.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Basile, F. Bloisi, L. Vicari, F. S. Simoni, Phys. Rev. E 48, 432 (1993).
    [CrossRef]
  2. F. Basile, F. Bloisi, L. Vicari, F. Simoni, Mol. Cryst. Liq. Cryst. 251, 271 (1994).
    [CrossRef]
  3. S. Zumer, Phys. Rev. A 37, 4006 (1988).
    [CrossRef] [PubMed]
  4. F. Bloisi, P. Terrecuso, L. Vicari, F. Simoni, “Voltage controlled light transmittance in polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. (to be published).
  5. J. B. Whitehead, S. Zumer, J. V. Doane, J. Appl. Phys. 73, 1057 (1992).
    [CrossRef]
  6. J. R. Kelly, P. Palffy-Muhoray, Mol. Cryst. Liq. Cryst. 243, 11 (1994).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1980).

1994

F. Basile, F. Bloisi, L. Vicari, F. Simoni, Mol. Cryst. Liq. Cryst. 251, 271 (1994).
[CrossRef]

J. R. Kelly, P. Palffy-Muhoray, Mol. Cryst. Liq. Cryst. 243, 11 (1994).
[CrossRef]

1993

F. Basile, F. Bloisi, L. Vicari, F. S. Simoni, Phys. Rev. E 48, 432 (1993).
[CrossRef]

1992

J. B. Whitehead, S. Zumer, J. V. Doane, J. Appl. Phys. 73, 1057 (1992).
[CrossRef]

1988

S. Zumer, Phys. Rev. A 37, 4006 (1988).
[CrossRef] [PubMed]

Basile, F.

F. Basile, F. Bloisi, L. Vicari, F. Simoni, Mol. Cryst. Liq. Cryst. 251, 271 (1994).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, F. S. Simoni, Phys. Rev. E 48, 432 (1993).
[CrossRef]

Bloisi, F.

F. Basile, F. Bloisi, L. Vicari, F. Simoni, Mol. Cryst. Liq. Cryst. 251, 271 (1994).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, F. S. Simoni, Phys. Rev. E 48, 432 (1993).
[CrossRef]

F. Bloisi, P. Terrecuso, L. Vicari, F. Simoni, “Voltage controlled light transmittance in polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. (to be published).

Born, M.

M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1980).

Doane, J. V.

J. B. Whitehead, S. Zumer, J. V. Doane, J. Appl. Phys. 73, 1057 (1992).
[CrossRef]

Kelly, J. R.

J. R. Kelly, P. Palffy-Muhoray, Mol. Cryst. Liq. Cryst. 243, 11 (1994).
[CrossRef]

Palffy-Muhoray, P.

J. R. Kelly, P. Palffy-Muhoray, Mol. Cryst. Liq. Cryst. 243, 11 (1994).
[CrossRef]

Simoni, F.

F. Basile, F. Bloisi, L. Vicari, F. Simoni, Mol. Cryst. Liq. Cryst. 251, 271 (1994).
[CrossRef]

F. Bloisi, P. Terrecuso, L. Vicari, F. Simoni, “Voltage controlled light transmittance in polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. (to be published).

Simoni, F. S.

F. Basile, F. Bloisi, L. Vicari, F. S. Simoni, Phys. Rev. E 48, 432 (1993).
[CrossRef]

Terrecuso, P.

F. Bloisi, P. Terrecuso, L. Vicari, F. Simoni, “Voltage controlled light transmittance in polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. (to be published).

Vicari, L.

F. Basile, F. Bloisi, L. Vicari, F. Simoni, Mol. Cryst. Liq. Cryst. 251, 271 (1994).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, F. S. Simoni, Phys. Rev. E 48, 432 (1993).
[CrossRef]

F. Bloisi, P. Terrecuso, L. Vicari, F. Simoni, “Voltage controlled light transmittance in polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. (to be published).

Whitehead, J. B.

J. B. Whitehead, S. Zumer, J. V. Doane, J. Appl. Phys. 73, 1057 (1992).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1980).

Zumer, S.

J. B. Whitehead, S. Zumer, J. V. Doane, J. Appl. Phys. 73, 1057 (1992).
[CrossRef]

S. Zumer, Phys. Rev. A 37, 4006 (1988).
[CrossRef] [PubMed]

J. Appl. Phys.

J. B. Whitehead, S. Zumer, J. V. Doane, J. Appl. Phys. 73, 1057 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst.

J. R. Kelly, P. Palffy-Muhoray, Mol. Cryst. Liq. Cryst. 243, 11 (1994).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, F. Simoni, Mol. Cryst. Liq. Cryst. 251, 271 (1994).
[CrossRef]

Phys. Rev. A

S. Zumer, Phys. Rev. A 37, 4006 (1988).
[CrossRef] [PubMed]

Phys. Rev. E

F. Basile, F. Bloisi, L. Vicari, F. S. Simoni, Phys. Rev. E 48, 432 (1993).
[CrossRef]

Other

F. Bloisi, P. Terrecuso, L. Vicari, F. Simoni, “Voltage controlled light transmittance in polymer dispersed liquid crystals,” Mol. Cryst. Liq. Cryst. (to be published).

M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: He–Ne, 2-mW He–Ne laser mounted upon a rotating support; C, chopper; BS, beam splitter; D1, D2, photodiode detectors; T, thermostatic oven; R, rotation stage; S, sample; LI, lock-in amplifier; FG, function generator; SA, signal amplifier.

Fig. 2
Fig. 2

Angular dependence of the transmittance for an impinging beam with the polarization plane orthogonal to the incidence plane. Experimental values (filled circles) are compared with values predicted by the model described in the text (solid curve). The same measurement has been repeated through a glass plate (open circles) and compared with the Fresnel formulas (dashed curve). Experimental errors are within the size of a circle.

Fig. 3
Fig. 3

Angular dependence of the transmittance for an impinging beam with the polarization plane in the incidence plane. Experimental values (filled circles) are compared with values predicted by the model described in the text (solid line). The same measurement has been repeated through a glass plate (open circles) and compared with the Fresnel formulas (dashed curve). Experimental errors are within the size of a circle.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S = P 2 ( n ^ · l ^ ) , S d = P 2 ( N ^ d · n ^ ) droplet , S f = P 2 ( E ^ · N ^ d ) sample ,
σ d ADA = 1 2 σ 0 ( 2 k R ) 2 [ cos 2    α 0 ( n de n p 1 ) 2 + sin 2 α 0 ( n do n p 1 ) 2 ] ,
n de = n do n de ( n do 2 sin 2 ϑ p + n de 2 cos 2 ϑ p ) 1 / 2 ,
n do = 2 π n o F { π 2 , 1 n e [ 2 3 ( n e 2 n o 2 ) ( 1 S d ) ] } ,
n de = n o n e [ 2 3 ( n o 2 n e 2 ) S d + 1 3 ( n o 2 + 2 n e 2 ) ] 1 / 2 ,
n de n do + ( n de n do ) sin 2 ϑ p .
σ d ADA = 2 σ 0 ( k R ) 2 ( n do n p 1 + n de n do n p sin 2 ϑ p ) 2 ,
σ d ADA = 2 σ 0 ( k R ) 2 ( n do n p 1 ) 2 .
τ = ( T 1 T 2 ) exp ( n υ σ d ADA d 0 / cos ϑ p ) ,
( T 1 T 2 ) = [ 4 sin ϑ g sin ϑ i cos ϑ g cos ϑ i sin 2 ( ϑ g + ϑ i ) cos 2 ( ϑ g ϑ i ) ] 2 ,
( T 1 T 2 ) = [ 4 sin ϑ g sin ϑ i cos ϑ g cos ϑ i sin 2 ( ϑ g + ϑ i ) ] 2 ,

Metrics