Abstract

Dynamic coupled-wave theory predicts the bending of recorded hologram phase planes in most photorefractive crystals. Bent holograms occur in LiNbO3 and other photovoltaic crystals that are particularly interesting as holographic storage media and result in a reduced overall diffraction efficiency. We show that hologram bending in LiNbO3 can be avoided or at least sensibly reduced by use of an actively stabilized recording technique.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  2. R. Rupp, Appl. Phys. B 41, 153 (1986).
    [CrossRef]
  3. S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
    [CrossRef]
  4. A. A. Freschi, J. Frejlich, Opt. Lett. 20, 635 (1995).
    [CrossRef] [PubMed]
  5. D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
    [CrossRef]
  6. P. A. M. dos Santos, L. Cescato, J. Frejlich, Opt. Lett. 13, 1014 (1988).
    [CrossRef]
  7. A. A. Freschi, J. Frejlich, J. Opt. Soc. Am. B 11, 1837 (1994).
    [CrossRef]
  8. P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  9. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, Opt. Commun. 23, 338 (1977).
    [CrossRef]

1995 (1)

1994 (2)

A. A. Freschi, J. Frejlich, J. Opt. Soc. Am. B 11, 1837 (1994).
[CrossRef]

S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
[CrossRef]

1988 (1)

1986 (1)

R. Rupp, Appl. Phys. B 41, 153 (1986).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

1977 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, Opt. Commun. 23, 338 (1977).
[CrossRef]

1972 (1)

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Amodei, J. J.

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Cescato, L.

dos Santos, P. A. M.

Frejlich, J.

Freschi, A. A.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, Opt. Commun. 23, 338 (1977).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, Opt. Commun. 23, 338 (1977).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, Opt. Commun. 23, 338 (1977).
[CrossRef]

Rupp, R.

R. Rupp, Appl. Phys. B 41, 153 (1986).
[CrossRef]

Selviah, D. R.

S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
[CrossRef]

Song, Z. H.

S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Tao, S.

S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Appl. Phys. B (1)

R. Rupp, Appl. Phys. B 41, 153 (1986).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

J. Appl. Phys. (1)

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, Opt. Commun. 23, 338 (1977).
[CrossRef]

S. Tao, Z. H. Song, D. R. Selviah, Opt. Commun. 108, 144 (1994).
[CrossRef]

Opt. Lett. (2)

Other (1)

P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Actively stabilized holographic recording and measurements setup. BS, beam splitter; M, mirror; PZT, piezoelectric-supported mirror; C, Fe-doped LiNbO3 crystal; DS, DR, photodetectors; BP’s, bandpass filters; FD, frequency doubler; PS, phase shifter; A, amplifier; OSC Ω, oscillator at frequency Ω; INT, integrator; HV, high-voltage source.

Fig. 2
Fig. 2

Evolution of VX, VY, I S dc, I R dc, and I S dc + I R dc for (a) free-stabilized recording with β2 = 1/21 and I R 0 + I S 0 3 . 7 mW / cm 2 and (b) self-stabilized recording with β2 = 1/21 and I S 0 + I R 0 3 . 7 mW / cm 2.

Fig. 3
Fig. 3

(a) Evolution of η and φ during free-stabilized recording for β2 = 1/21 (solid curves) with I R 0 + I S 0 3 . 7 mW / cm 2 and for β2 = 15 (dashed curves) with I R 0 + I S 0 4 . 0 mW / cm 2 .(b) Evolution of η during self-stabilized recording for β2 = 1/21 (solid curve) with I R 0 + I S 0 3 . 7 mW / cm 2and for β2 = 17 (dashed curve) with I R 0 + I S 0 4 . 0 mW / cm 2 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V X = ± V 0 sin φ ,               V Y = ± V 0 cos φ .
V X 2 + V Y 2 = [ 16 J 1 2 ( ψ d ) k E 2 T 2 I S 0 I R 0 ] η ( 1 η ) ,
tan φ = ± V X / V Y ,
I S dc I R dc = [ ( I S 0 I R 0 ) ( 1 2 η ) + 4 J 0 ( ψ d ) × I S 0 I S 0 η ( 1 η ) cos φ ] T .

Metrics