Abstract

We have applied a new modified Sagnac interferometric technique to measure the real part of the intensity-dependent refractive index of a single-mode polymer optical fiber. For a 0.1% by weight squaraine dye in a poly(methyl methacrylate) core, Re[χ1111(3)] is 12(±7) × 10−13 cm3/erg at λ = 1064 nm. We discuss the effect of these measurements on all-optical devices.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Kuzyk, J. E. Sohn, C. W. Dirk, J. Opt. Soc. Am. B 5, 842 (1990);M . G. Kuzyk, C. W. Dirk, Phys. Rev. A 41, 5098 (1990).
    [CrossRef]
  2. Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, A. F. Garito, Nonlin. Opt. 6, 145 (1993).
  3. C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quant. Chem. 43, 27 (1992).
    [CrossRef]
  4. M. G. Kuzyk, U. C. Paek, C. W. Dirk, Appl. Phys. Lett. 59, 902 (1991).
    [CrossRef]
  5. M. C. Gabriel, N. H. Whitaker, C. W. Dirk, M. G. Kuzyk, M. Thakur, Opt. Lett. 16, 1334 (1991).
    [CrossRef] [PubMed]
  6. C. Poga, M. G. Kuzyk, C. W. Dirk, J. Opt. Soc. Am. B 11, 80 (1994).
    [CrossRef]
  7. Y. Z. Yu, R. F. Shi, A. F. Garito, C. H. Grossman, Opt. Lett. 19, 786 (1994);J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, Opt. Lett. 19,984, 1909 (1994);C. Poga, T. M. Brown, M. G. Kuzyk, C. W. Dirk, J. Opt. Soc. Am. B 12, 531 (1995).
    [CrossRef] [PubMed]
  8. C. S. Winter, S. N. Oliver, J. D. Rush, Opt. Commun. 69, 45 (1988).
    [CrossRef]
  9. M. J. Weber, Handbook of Laser Science and Technology ( CRC, Ann Arbor, Mich., 1995).

1995 (1)

M. J. Weber, Handbook of Laser Science and Technology ( CRC, Ann Arbor, Mich., 1995).

1994 (2)

1993 (1)

Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, A. F. Garito, Nonlin. Opt. 6, 145 (1993).

1992 (1)

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quant. Chem. 43, 27 (1992).
[CrossRef]

1991 (2)

1990 (1)

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, J. Opt. Soc. Am. B 5, 842 (1990);M . G. Kuzyk, C. W. Dirk, Phys. Rev. A 41, 5098 (1990).
[CrossRef]

1988 (1)

C. S. Winter, S. N. Oliver, J. D. Rush, Opt. Commun. 69, 45 (1988).
[CrossRef]

Cheng, L. T.

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quant. Chem. 43, 27 (1992).
[CrossRef]

Dirk, C. W.

C. Poga, M. G. Kuzyk, C. W. Dirk, J. Opt. Soc. Am. B 11, 80 (1994).
[CrossRef]

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quant. Chem. 43, 27 (1992).
[CrossRef]

M. G. Kuzyk, U. C. Paek, C. W. Dirk, Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

M. C. Gabriel, N. H. Whitaker, C. W. Dirk, M. G. Kuzyk, M. Thakur, Opt. Lett. 16, 1334 (1991).
[CrossRef] [PubMed]

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, J. Opt. Soc. Am. B 5, 842 (1990);M . G. Kuzyk, C. W. Dirk, Phys. Rev. A 41, 5098 (1990).
[CrossRef]

Gabriel, M. C.

Garito, A. F.

Grossman, C. H.

Kuzyk, M. G.

C. Poga, M. G. Kuzyk, C. W. Dirk, J. Opt. Soc. Am. B 11, 80 (1994).
[CrossRef]

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quant. Chem. 43, 27 (1992).
[CrossRef]

M. G. Kuzyk, U. C. Paek, C. W. Dirk, Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

M. C. Gabriel, N. H. Whitaker, C. W. Dirk, M. G. Kuzyk, M. Thakur, Opt. Lett. 16, 1334 (1991).
[CrossRef] [PubMed]

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, J. Opt. Soc. Am. B 5, 842 (1990);M . G. Kuzyk, C. W. Dirk, Phys. Rev. A 41, 5098 (1990).
[CrossRef]

Oliver, S. N.

C. S. Winter, S. N. Oliver, J. D. Rush, Opt. Commun. 69, 45 (1988).
[CrossRef]

Paek, U. C.

M. G. Kuzyk, U. C. Paek, C. W. Dirk, Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

Poga, C.

Rush, J. D.

C. S. Winter, S. N. Oliver, J. D. Rush, Opt. Commun. 69, 45 (1988).
[CrossRef]

Shi, R. F.

Sohn, J. E.

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, J. Opt. Soc. Am. B 5, 842 (1990);M . G. Kuzyk, C. W. Dirk, Phys. Rev. A 41, 5098 (1990).
[CrossRef]

Thakur, M.

Weber, M. J.

M. J. Weber, Handbook of Laser Science and Technology ( CRC, Ann Arbor, Mich., 1995).

Whitaker, N. H.

Winter, C. S.

C. S. Winter, S. N. Oliver, J. D. Rush, Opt. Commun. 69, 45 (1988).
[CrossRef]

Yu, Y. Z.

Zamani-Khamari, O.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, A. F. Garito, Nonlin. Opt. 6, 145 (1993).

Zhou, Q. L.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, A. F. Garito, Nonlin. Opt. 6, 145 (1993).

Appl. Phys. Lett. (1)

M. G. Kuzyk, U. C. Paek, C. W. Dirk, Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

Handbook of Laser Science and Technology (1)

M. J. Weber, Handbook of Laser Science and Technology ( CRC, Ann Arbor, Mich., 1995).

Int. J. Quant. Chem. (1)

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quant. Chem. 43, 27 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

C. Poga, M. G. Kuzyk, C. W. Dirk, J. Opt. Soc. Am. B 11, 80 (1994).
[CrossRef]

M. G. Kuzyk, J. E. Sohn, C. W. Dirk, J. Opt. Soc. Am. B 5, 842 (1990);M . G. Kuzyk, C. W. Dirk, Phys. Rev. A 41, 5098 (1990).
[CrossRef]

Nonlin. Opt. (1)

Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, A. F. Garito, Nonlin. Opt. 6, 145 (1993).

Opt. Commun. (1)

C. S. Winter, S. N. Oliver, J. D. Rush, Opt. Commun. 69, 45 (1988).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sagnac interferometer configuration used to measure the intensity-dependent refractive index.

Fig. 2
Fig. 2

Intensity of light at frequency Ω (top) and frequency 2Ω (bottom) as a function of phase difference between the two counterpropagating light beams for liquid nitrobenzene in a sample cell.

Fig. 3
Fig. 3

Intensity of light at frequency Ω (top) and frequency 2Ω (bottom) as a function of phase difference between the two counterpropagating light beams for a single-mode ISQ/PMMA fiber.

Tables (3)

Tables Icon

Table 1 Measured Third-Order Susceptibilities for Nitrobenzene

Tables Icon

Table 2 Comparison of Intensity-Dependent Refractive Indices and Third-Order Susceptibilities

Tables Icon

Table 3 Comparison between Measured Molecular Susceptibilities

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Re [ χ 1111 ( 3 ) ] = n 0 2 c 12 π 2 Re [ n 1111 ( 2 ) ] = ( I 2 Ω 2 f δ 2 Ω 2 ) 1 / 2 I Ω × c n I ( 0 ) n 0 2 f α 3 2 π 2 { exp [ 4 π n I ( 0 ) l / λ ] 1 } 1 I 0 Ω ,
Im [ χ 1111 ( 3 ) ] = n 0 2 c 12 π 2 Im [ n 1111 ( 2 ) ] = c n I ( 0 ) n 0 2 f 3 / 2 α 3 2 π 2 { exp [ 4 π n I ( 0 ) l / λ ] 1 } 1 I 0 Ω δ 2 Ω I Ω ,

Metrics