Abstract

We report the generation of sub-Poissonian pulses of light by means of traveling-wave second-harmonic generation (SHG) in a type II phase-matched nonlinear crystal. On direct detection, the quantum noise on the output light, which is polarized orthogonally to the input fundamental field, is measured to be below the shot-noise limit by as much as 0.3 ± 0.2 dB (6 ± 4%). We show that the input fundamental-power dependence of the measured Fano factor, direct-detection noise as a fraction of the shot-noise limit, is in qualitative agreement with the quantum theory of SHG.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Wu, M. Xiao, H. J. Kimble, J. Opt. Soc. Am. B 4, 1465 (1987); E. S. Polzik, J. Carri, H. J. Kimble, Appl. Phys. B 55, 279 (1992); G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, J. Mlynek, J. Opt. Soc. Am. B 12, 2304 (1995).
    [CrossRef]
  2. R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); P. D. Townsend, R. Loudon, Phys. Rev. A 45, 458 (1992); T. Hirano, M. Matsuoka, Appl. Phys. B 55, 233 (1992); C. Kim, P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
    [CrossRef] [PubMed]
  3. S. F. Pereira, M. Xiao, H. J. Kimble, J. L. Hall, Phys. Rev. A 38, 4931 (1988).
    [CrossRef] [PubMed]
  4. A. Sizmann, R. J. Horowicz, G. Wagner, G. Leuchs, Opt. Commun. 80, 138 (1990); P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek, Appl. Phys. B 55, 216 (1992); R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H. A. Bachor, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, H.-A. Bachor, Opt. Lett. 20, 1316 (1995); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
    [CrossRef] [PubMed]
  5. Z. Y. Ou, Phys. Rev. A 49, 2106 (1994).
    [CrossRef] [PubMed]
  6. R.-D. Li, P. Kumar, Opt. Lett. 18, 1961 (1993); Phys. Rev. A 49, 2157 (1994).
    [CrossRef] [PubMed]
  7. R.-D. Li, P. Kumar, J. Opt. Soc. Am. B 12, 2310 (1995).
    [CrossRef]
  8. J. H. Shapiro, IEEE J. Quantum Electron. QE-21, 237 (1985).
    [CrossRef]
  9. O. Aytür, P. Kumar, Opt. Lett. 15, 390 (1990).
    [CrossRef] [PubMed]
  10. R.-D. Li, S.-K. Choi, C. Kim, P. Kumar, Phys. Rev. A Rapid Commun. 51, R3429 (1995).
  11. This argument would break down if a conversion efficiency approaching 100% could be obtained. However, because of the limited pump power, this regime of operation was experimentally inaccessible.
  12. G. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, G. Assanto, Opt. Lett. 18, 13 (1992); D. C. Hutchings, J. S. Aitchison, C. N. Ironside, Opt. Lett. 18, 793 (1993).
    [CrossRef] [PubMed]
  13. Although, in principle, it should be possible to coherently subtract the leakage field and recover the squeezed vacuum with the use of an appropriate beam splitter, it is not clear how one would experimentally generate the needed coherent-state beam, because the spatial profile of the leakage mode is power dependent and non-Gaussian.

1995 (2)

R.-D. Li, P. Kumar, J. Opt. Soc. Am. B 12, 2310 (1995).
[CrossRef]

R.-D. Li, S.-K. Choi, C. Kim, P. Kumar, Phys. Rev. A Rapid Commun. 51, R3429 (1995).

1994 (1)

Z. Y. Ou, Phys. Rev. A 49, 2106 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

1990 (2)

O. Aytür, P. Kumar, Opt. Lett. 15, 390 (1990).
[CrossRef] [PubMed]

A. Sizmann, R. J. Horowicz, G. Wagner, G. Leuchs, Opt. Commun. 80, 138 (1990); P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek, Appl. Phys. B 55, 216 (1992); R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H. A. Bachor, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, H.-A. Bachor, Opt. Lett. 20, 1316 (1995); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[CrossRef] [PubMed]

1988 (1)

S. F. Pereira, M. Xiao, H. J. Kimble, J. L. Hall, Phys. Rev. A 38, 4931 (1988).
[CrossRef] [PubMed]

1987 (2)

L. A. Wu, M. Xiao, H. J. Kimble, J. Opt. Soc. Am. B 4, 1465 (1987); E. S. Polzik, J. Carri, H. J. Kimble, Appl. Phys. B 55, 279 (1992); G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, J. Mlynek, J. Opt. Soc. Am. B 12, 2304 (1995).
[CrossRef]

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); P. D. Townsend, R. Loudon, Phys. Rev. A 45, 458 (1992); T. Hirano, M. Matsuoka, Appl. Phys. B 55, 233 (1992); C. Kim, P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef] [PubMed]

1985 (1)

J. H. Shapiro, IEEE J. Quantum Electron. QE-21, 237 (1985).
[CrossRef]

Assanto, G.

Aytür, O.

Choi, S.-K.

R.-D. Li, S.-K. Choi, C. Kim, P. Kumar, Phys. Rev. A Rapid Commun. 51, R3429 (1995).

Grangier, P.

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); P. D. Townsend, R. Loudon, Phys. Rev. A 45, 458 (1992); T. Hirano, M. Matsuoka, Appl. Phys. B 55, 233 (1992); C. Kim, P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef] [PubMed]

Hall, J. L.

S. F. Pereira, M. Xiao, H. J. Kimble, J. L. Hall, Phys. Rev. A 38, 4931 (1988).
[CrossRef] [PubMed]

Horowicz, R. J.

A. Sizmann, R. J. Horowicz, G. Wagner, G. Leuchs, Opt. Commun. 80, 138 (1990); P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek, Appl. Phys. B 55, 216 (1992); R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H. A. Bachor, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, H.-A. Bachor, Opt. Lett. 20, 1316 (1995); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[CrossRef] [PubMed]

Kim, C.

R.-D. Li, S.-K. Choi, C. Kim, P. Kumar, Phys. Rev. A Rapid Commun. 51, R3429 (1995).

Kimble, H. J.

Kumar, P.

LaPorta, A.

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); P. D. Townsend, R. Loudon, Phys. Rev. A 45, 458 (1992); T. Hirano, M. Matsuoka, Appl. Phys. B 55, 233 (1992); C. Kim, P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef] [PubMed]

Leuchs, G.

A. Sizmann, R. J. Horowicz, G. Wagner, G. Leuchs, Opt. Commun. 80, 138 (1990); P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek, Appl. Phys. B 55, 216 (1992); R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H. A. Bachor, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, H.-A. Bachor, Opt. Lett. 20, 1316 (1995); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[CrossRef] [PubMed]

Li, R.-D.

Ou, Z. Y.

Z. Y. Ou, Phys. Rev. A 49, 2106 (1994).
[CrossRef] [PubMed]

Pereira, S. F.

S. F. Pereira, M. Xiao, H. J. Kimble, J. L. Hall, Phys. Rev. A 38, 4931 (1988).
[CrossRef] [PubMed]

Potasek, M. J.

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); P. D. Townsend, R. Loudon, Phys. Rev. A 45, 458 (1992); T. Hirano, M. Matsuoka, Appl. Phys. B 55, 233 (1992); C. Kim, P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef] [PubMed]

Shapiro, J. H.

J. H. Shapiro, IEEE J. Quantum Electron. QE-21, 237 (1985).
[CrossRef]

Sheik-Bahae, M.

Sizmann, A.

A. Sizmann, R. J. Horowicz, G. Wagner, G. Leuchs, Opt. Commun. 80, 138 (1990); P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek, Appl. Phys. B 55, 216 (1992); R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H. A. Bachor, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, H.-A. Bachor, Opt. Lett. 20, 1316 (1995); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[CrossRef] [PubMed]

Slusher, R. E.

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); P. D. Townsend, R. Loudon, Phys. Rev. A 45, 458 (1992); T. Hirano, M. Matsuoka, Appl. Phys. B 55, 233 (1992); C. Kim, P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef] [PubMed]

Stegeman, G.

Van Stryland, E. W.

Wagner, G.

A. Sizmann, R. J. Horowicz, G. Wagner, G. Leuchs, Opt. Commun. 80, 138 (1990); P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek, Appl. Phys. B 55, 216 (1992); R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H. A. Bachor, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, H.-A. Bachor, Opt. Lett. 20, 1316 (1995); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[CrossRef] [PubMed]

Wu, L. A.

Xiao, M.

Yurke, B.

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); P. D. Townsend, R. Loudon, Phys. Rev. A 45, 458 (1992); T. Hirano, M. Matsuoka, Appl. Phys. B 55, 233 (1992); C. Kim, P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

J. H. Shapiro, IEEE J. Quantum Electron. QE-21, 237 (1985).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

A. Sizmann, R. J. Horowicz, G. Wagner, G. Leuchs, Opt. Commun. 80, 138 (1990); P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, J. Mlynek, Appl. Phys. B 55, 216 (1992); R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H. A. Bachor, J. Mlynek, Phys. Rev. Lett. 72, 3807 (1994); T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, H.-A. Bachor, Opt. Lett. 20, 1316 (1995); H. Tsuchida, Opt. Lett. 20, 2240 (1995).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (2)

S. F. Pereira, M. Xiao, H. J. Kimble, J. L. Hall, Phys. Rev. A 38, 4931 (1988).
[CrossRef] [PubMed]

Z. Y. Ou, Phys. Rev. A 49, 2106 (1994).
[CrossRef] [PubMed]

Phys. Rev. A Rapid Commun. (1)

R.-D. Li, S.-K. Choi, C. Kim, P. Kumar, Phys. Rev. A Rapid Commun. 51, R3429 (1995).

Phys. Rev. Lett. (1)

R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); P. D. Townsend, R. Loudon, Phys. Rev. A 45, 458 (1992); T. Hirano, M. Matsuoka, Appl. Phys. B 55, 233 (1992); C. Kim, P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef] [PubMed]

Other (2)

This argument would break down if a conversion efficiency approaching 100% could be obtained. However, because of the limited pump power, this regime of operation was experimentally inaccessible.

Although, in principle, it should be possible to coherently subtract the leakage field and recover the squeezed vacuum with the use of an appropriate beam splitter, it is not clear how one would experimentally generate the needed coherent-state beam, because the spatial profile of the leakage mode is power dependent and non-Gaussian.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup to generate sub-Poissonian pulses of light by means of TW type II phase-matched SHG. Direct-detection noise measurements are made on the output fundamental field that is polarized orthogonally to the input fundamental field.

Fig. 2
Fig. 2

Time trace of the average photocurrent (dashed trace, left ordinate) and the associated noise (solid trace, right ordinate) as the photocurrents from the two detectors are alternately summed and differenced. On the right-ordinate scale, which is proportional to the logarithm of the measured noise power, a change of +0.1 V corresponds to an increase in noise by a factor of 0.5 dB.

Fig. 3
Fig. 3

Dependence of the observed Fano factor on the SHG efficiency. The dashed line is a plot of Eqs. (1) and (2) with η = 0.78. The 0.0-dB line indicates the coherent-state noise level, with crosses as the measured values (see text for details). SHG efficiency of 0.15 was obtained for a fundamental average power of 7.8 mW, corresponding to a peak intensity of ~250 MW/cm2 within the crystal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S = 1 γ ,
F = η S + 1 η .

Metrics