Abstract

We propose and theoretically investigate a novel operating regime of femtosecond Kerr-lens mode-locked solid-state lasers that avoids group-velocity dispersion compensation by use of a nonresonant semiconductor plate in the focused resonator section that provides an overall negative nonlinear refractive index per round trip. The saturable loss of the laser resonator with an effective self-defocusing nonlinearity is derived from a generalized ABCD matrix formalism, and the correspondingly calculated steady-state pulse parameters show that a Kerr-lens mode-locked laser with an overall negative nonlinear refractive index generates stable femtosecond pulses without any dispersion compensation.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, W. Sibbet, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  2. A. Stingel, M. Lenzner, Ch. Spielmann, F. Krausz, R. Szipöcs, Opt. Lett. 20, 602 (1995).
    [CrossRef]
  3. D. Kopf, G. Zhang, R. Fluck, M. Moser, U. Keller, Opt. Lett. 21, 486 (1996).
    [CrossRef] [PubMed]
  4. M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland, Phys. Rev. Lett. 65, 96 (1990).
    [CrossRef] [PubMed]
  5. J. Herrmann, J. Opt. Soc. Am. B 11, 498 (1994).
    [CrossRef]
  6. S. Gatz, J. Herrmann, Opt. Lett. 20, 825 (1995).
    [CrossRef] [PubMed]
  7. J. Herrmann, M. Müller, J. Opt. Soc. Am. B 13, 1542 (1996).
    [CrossRef]
  8. H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
    [CrossRef]
  9. B. Proctor, E. Westwig, F. Wise, Opt. Lett. 18, 1654 (1993).
    [CrossRef] [PubMed]

1996

1995

1994

1993

1991

1990

M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland, Phys. Rev. Lett. 65, 96 (1990).
[CrossRef] [PubMed]

Fluck, R.

Fujimoto, J. G.

Gatz, S.

Hagan, D. J.

M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland, Phys. Rev. Lett. 65, 96 (1990).
[CrossRef] [PubMed]

Haus, H. A.

Herrmann, J.

Ippen, E. P.

Kean, P. N.

Keller, U.

Kopf, D.

Krausz, F.

Lenzner, M.

Moser, M.

Müller, M.

Proctor, B.

Sheik-Bahae, M.

M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland, Phys. Rev. Lett. 65, 96 (1990).
[CrossRef] [PubMed]

Sibbet, W.

Spence, D. E.

Spielmann, Ch.

Stingel, A.

Szipöcs, R.

Van Stryland, E. W.

M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland, Phys. Rev. Lett. 65, 96 (1990).
[CrossRef] [PubMed]

Westwig, E.

Wise, F.

Zhang, G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Standard four-mirror cavity with an additional semiconductor plate between the focusing mirrors.

Fig. 2
Fig. 2

(a) Saturable-aperture loss coefficient γa1 over the normalized distance of focusing mirrors M3,4, ξ = (a + b + e)/f, and the normalized separation of the laser crystal from mirror M4, b/f. (b) Same as in (a) but for the overall SPM parameter κ.

Fig. 3
Fig. 3

(a) Normalized FWHM pulse width τFWHM/T2 over normalized second-order dispersion D in the positive SPM regime, κ > 0, for different pump rates μ. (b) Normalized FWHM pulse width τFWHM/T2 over normalized second-order dispersion D in the negative SPM regime, κ > 0, for different pump rates μ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ a = 1 exp [ 2 w 0 2 w 2 2 ( P ) ] 1 γ a 0 + γ a 1 P γ a 2 P 2 ,
( c 2 2 η 2 + c 0 + c N 1 | ψ | 2 ) ψ + ( c 4 4 η 4 + c 3 3 η 3 + c 1 η + c N 2 | ψ | 4 ) ψ + c N 3 [ | ψ | 2 η ψ + η ( | ψ | 2 ψ ) ] + c N 4 [ | ψ | 2 2 η 2 ψ + 2 η 2 ( | ψ | 2 ψ ) ] = 0 .
ψ = φ 0 + A S η φ 0 + S 2 η 2 φ 0 ,

Metrics