Abstract

Theory predicts that a two-pump fiber optical parametric amplifier or wavelength converter operated near the fiber zero-dispersion wavelength can exhibit a gain spectrum approximated by a Chebyshev polynomial of order 8. Under realistic conditions of pump spacing and fiber dispersion, very low-gain ripple can be obtained over a large bandwidth. For example, a dispersion-shifted fiber can provide a signal amplifier with a gain of 20 dB with 0.2-dB uniformity over a 45-nm bandwidth. Potential limitations are discussed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, S.-M. Hwang, IEEE Photon. Technol. Lett. 5, 1023 (1993).
    [CrossRef]
  2. M. E. Marhic, N. Kagi, T.-K. Chiang, L. G. Kazovsky, Opt. Lett. 21, 573 (1996).
    [CrossRef] [PubMed]
  3. R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
    [CrossRef]
  4. H. Onaka, K. Otsuka, H. Miyata, T. Chikama, IEEE Photon. Technol. Lett. 6, 1454 (1994).
    [CrossRef]
  5. M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
    [CrossRef]

1996 (1)

1995 (1)

M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

1994 (1)

H. Onaka, K. Otsuka, H. Miyata, T. Chikama, IEEE Photon. Technol. Lett. 6, 1454 (1994).
[CrossRef]

1993 (1)

A. E. Willner, S.-M. Hwang, IEEE Photon. Technol. Lett. 5, 1023 (1993).
[CrossRef]

1982 (1)

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

Chiang, T.-K.

Chikama, T.

H. Onaka, K. Otsuka, H. Miyata, T. Chikama, IEEE Photon. Technol. Lett. 6, 1454 (1994).
[CrossRef]

Holmes, M. J.

M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Hwang, S.-M.

A. E. Willner, S.-M. Hwang, IEEE Photon. Technol. Lett. 5, 1023 (1993).
[CrossRef]

Kagi, N.

Kazovsky, L. G.

Manning, R. J.

M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Marhic, M. E.

Miyata, H.

H. Onaka, K. Otsuka, H. Miyata, T. Chikama, IEEE Photon. Technol. Lett. 6, 1454 (1994).
[CrossRef]

Onaka, H.

H. Onaka, K. Otsuka, H. Miyata, T. Chikama, IEEE Photon. Technol. Lett. 6, 1454 (1994).
[CrossRef]

Otsuka, K.

H. Onaka, K. Otsuka, H. Miyata, T. Chikama, IEEE Photon. Technol. Lett. 6, 1454 (1994).
[CrossRef]

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

Williams, D. L.

M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

Willner, A. E.

A. E. Willner, S.-M. Hwang, IEEE Photon. Technol. Lett. 5, 1023 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. Onaka, K. Otsuka, H. Miyata, T. Chikama, IEEE Photon. Technol. Lett. 6, 1454 (1994).
[CrossRef]

M. J. Holmes, D. L. Williams, R. J. Manning, IEEE Photon. Technol. Lett. 7, 1045 (1995).
[CrossRef]

A. E. Willner, S.-M. Hwang, IEEE Photon. Technol. Lett. 5, 1023 (1993).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Graph of β2(ω) near ω0, showing the main frequencies involved.

Fig. 2
Fig. 2

Graphs of Δβ/u and (g/u)2 versus Δωsωt for ρ = 0.1. Note the expanded vertical scale for (g/u)2. All ratios are dimensionless. Filled (open) circles correspond to gain maxima (minima).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

g i ( L ) = E i ( L ) E s ( 0 ) = u r g sinh ( g L ) ,
g 2 = 1 4 ( Δ β 2 + 2 u Δ β + u 2 4 u 2 r 2 ) ,
Δ β = 2 m = 1 β 2 m ( 2 m ) ! [ ( Δ ω s ) 2 m ( Δ ω p ) 2 m ] ,
Δ β u = β 2 u [ ( Δ ω s ) 2 ( Δ ω p ) 2 ] + β 4 12 u [ ( Δ ω s ) 4 ( Δ ω p ) 4 ] ,
Δ β u = 1 + ρ T 4 ( Δ ω s Δ ω t ) ,
Δ ω t = ( 12 β 2 β 4 ) 1 / 2 ,
ρ = 3 2 β 2 2 β 4 u ,
3 2 β 2 2 + β 2 β 4 Δ ω p 2 + β 4 2 12 Δ ω p 4 β 4 u = 0.
β 2 = β 4 Δ ω p 2 3 [ 1 ( 1 2 + 6 u β 4 Δ ω p 4 ) 1 / 2 ] ,
Δ ω t = 2 Δ ω p ( 1 { 1 2 [ 1 + ( Δ ω 4 Δ ω p ) 4 ] } 1 / 2 ) 1 / 2 .
ρ = 1 8 ( Δ ω t Δ ω 4 ) 4 .
g 2 u 2 = 1 ρ 2 4 ( T 4 ) 2 = 1 ρ 2 8 ( 1 + T 8 ) ,
g u = 1 ρ 2 16 ( 1 + T 8 ) .

Metrics