Abstract

A single-pass nonlinear interferometer with feedback field rotation is considered. Increasing feedback gain results in excitation of spatial subharmonics that distort optical reverberators, which are basic output patterns of the system. Features of the period-doubling process depend on the number of the reverberator’s petals. A new spatiotemporal effect is observed: A basic structure with an odd number of petals is perturbed not by a static subharmonic but by a rotating wave.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. B. Abraham, W. J. Firth, J. Opt. Soc. Am. B 7, 951 (1990).
    [CrossRef]
  2. L. A. Lugiato, Phys. Rep. 219, 293 (1992).
    [CrossRef]
  3. S. A. Akhmanov, M. A. Vorontsov, V. Yu. Ivanov, A. V. Larichev, N. I. Zheleznikh, J. Opt. Soc. Am. B 978 (1992).
    [CrossRef]
  4. P. Ramazza, S. Residori, E. Pampaloni, A. V. Larichev, Phys. Rev. A 53, 400 (1996).
    [CrossRef] [PubMed]
  5. M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, Opt. Eng. 34, 3229 (1995).
    [CrossRef]
  6. S. Aumaitre, M. Le Berre, E. Ressayre, A. Tallet, Quantum Semiclass. Opt. 7, 795 (1995).
    [CrossRef]
  7. F. T. Arecchi, A. V. Larichev, M. A. Vorontsov, Opt. Commun. 105, 297 (1994).
    [CrossRef]
  8. M. A. Vorontsov, M. E. Kirakosyan, A. V. Larichev, Sov. J. Quantum Electron. 21, 105 (1991).
    [CrossRef]
  9. A. V. Larichev, I. P. Nikolaev, Laser Phys. 6, 111 (1996).
  10. K. Ikeda, O. Akimoto, Appl. Phys. B 28, 170 (1982).
  11. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).

1996 (2)

P. Ramazza, S. Residori, E. Pampaloni, A. V. Larichev, Phys. Rev. A 53, 400 (1996).
[CrossRef] [PubMed]

A. V. Larichev, I. P. Nikolaev, Laser Phys. 6, 111 (1996).

1995 (2)

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, Opt. Eng. 34, 3229 (1995).
[CrossRef]

S. Aumaitre, M. Le Berre, E. Ressayre, A. Tallet, Quantum Semiclass. Opt. 7, 795 (1995).
[CrossRef]

1994 (1)

F. T. Arecchi, A. V. Larichev, M. A. Vorontsov, Opt. Commun. 105, 297 (1994).
[CrossRef]

1992 (2)

1991 (1)

M. A. Vorontsov, M. E. Kirakosyan, A. V. Larichev, Sov. J. Quantum Electron. 21, 105 (1991).
[CrossRef]

1990 (1)

1982 (1)

K. Ikeda, O. Akimoto, Appl. Phys. B 28, 170 (1982).

Abraham, N. B.

Akhmanov, S. A.

Akimoto, O.

K. Ikeda, O. Akimoto, Appl. Phys. B 28, 170 (1982).

Arecchi, F. T.

F. T. Arecchi, A. V. Larichev, M. A. Vorontsov, Opt. Commun. 105, 297 (1994).
[CrossRef]

Aumaitre, S.

S. Aumaitre, M. Le Berre, E. Ressayre, A. Tallet, Quantum Semiclass. Opt. 7, 795 (1995).
[CrossRef]

Carhart, G. W.

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, Opt. Eng. 34, 3229 (1995).
[CrossRef]

Firth, W. J.

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).

Ikeda, K.

K. Ikeda, O. Akimoto, Appl. Phys. B 28, 170 (1982).

Ivanov, V. Yu.

Kirakosyan, M. E.

M. A. Vorontsov, M. E. Kirakosyan, A. V. Larichev, Sov. J. Quantum Electron. 21, 105 (1991).
[CrossRef]

Larichev, A. V.

P. Ramazza, S. Residori, E. Pampaloni, A. V. Larichev, Phys. Rev. A 53, 400 (1996).
[CrossRef] [PubMed]

A. V. Larichev, I. P. Nikolaev, Laser Phys. 6, 111 (1996).

F. T. Arecchi, A. V. Larichev, M. A. Vorontsov, Opt. Commun. 105, 297 (1994).
[CrossRef]

S. A. Akhmanov, M. A. Vorontsov, V. Yu. Ivanov, A. V. Larichev, N. I. Zheleznikh, J. Opt. Soc. Am. B 978 (1992).
[CrossRef]

M. A. Vorontsov, M. E. Kirakosyan, A. V. Larichev, Sov. J. Quantum Electron. 21, 105 (1991).
[CrossRef]

Le Berre, M.

S. Aumaitre, M. Le Berre, E. Ressayre, A. Tallet, Quantum Semiclass. Opt. 7, 795 (1995).
[CrossRef]

Lugiato, L. A.

L. A. Lugiato, Phys. Rep. 219, 293 (1992).
[CrossRef]

Nikolaev, I. P.

A. V. Larichev, I. P. Nikolaev, Laser Phys. 6, 111 (1996).

Pampaloni, E.

P. Ramazza, S. Residori, E. Pampaloni, A. V. Larichev, Phys. Rev. A 53, 400 (1996).
[CrossRef] [PubMed]

Ramazza, P.

P. Ramazza, S. Residori, E. Pampaloni, A. V. Larichev, Phys. Rev. A 53, 400 (1996).
[CrossRef] [PubMed]

Residori, S.

P. Ramazza, S. Residori, E. Pampaloni, A. V. Larichev, Phys. Rev. A 53, 400 (1996).
[CrossRef] [PubMed]

Ressayre, E.

S. Aumaitre, M. Le Berre, E. Ressayre, A. Tallet, Quantum Semiclass. Opt. 7, 795 (1995).
[CrossRef]

Ricklin, J. C.

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, Opt. Eng. 34, 3229 (1995).
[CrossRef]

Tallet, A.

S. Aumaitre, M. Le Berre, E. Ressayre, A. Tallet, Quantum Semiclass. Opt. 7, 795 (1995).
[CrossRef]

Vorontsov, M. A.

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, Opt. Eng. 34, 3229 (1995).
[CrossRef]

F. T. Arecchi, A. V. Larichev, M. A. Vorontsov, Opt. Commun. 105, 297 (1994).
[CrossRef]

S. A. Akhmanov, M. A. Vorontsov, V. Yu. Ivanov, A. V. Larichev, N. I. Zheleznikh, J. Opt. Soc. Am. B 978 (1992).
[CrossRef]

M. A. Vorontsov, M. E. Kirakosyan, A. V. Larichev, Sov. J. Quantum Electron. 21, 105 (1991).
[CrossRef]

Zheleznikh, N. I.

Appl. Phys. B (1)

K. Ikeda, O. Akimoto, Appl. Phys. B 28, 170 (1982).

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

A. V. Larichev, I. P. Nikolaev, Laser Phys. 6, 111 (1996).

Opt. Commun. (1)

F. T. Arecchi, A. V. Larichev, M. A. Vorontsov, Opt. Commun. 105, 297 (1994).
[CrossRef]

Opt. Eng. (1)

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, Opt. Eng. 34, 3229 (1995).
[CrossRef]

Phys. Rep. (1)

L. A. Lugiato, Phys. Rep. 219, 293 (1992).
[CrossRef]

Phys. Rev. A (1)

P. Ramazza, S. Residori, E. Pampaloni, A. V. Larichev, Phys. Rev. A 53, 400 (1996).
[CrossRef] [PubMed]

Quantum Semiclass. Opt. (1)

S. Aumaitre, M. Le Berre, E. Ressayre, A. Tallet, Quantum Semiclass. Opt. 7, 795 (1995).
[CrossRef]

Sov. J. Quantum Electron. (1)

M. A. Vorontsov, M. E. Kirakosyan, A. V. Larichev, Sov. J. Quantum Electron. 21, 105 (1991).
[CrossRef]

Other (1)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Photographs of the feedback intensity distribution and the corresponding spatial spectra, radially averaged within a ring of radius 1.1 mm < r0 < 1.5 mm. The parameters are a, b, g = 0.7; c, d, g = 1.25; e, f, g = 2.8. Δ = π/4 for all the pictures.

Fig. 3
Fig. 3

Threshold of the first PD bifurcation versus number of petals. Δ = π/m, where m is even. Numerical simulation results are approximated by a third-degree polynomial.

Fig. 4
Fig. 4

Moving defect for the three-petal basic structure: (a) the perturbation wave starts rotating (g = 1.7), (b) time-domain PD occurs (g = 1.9).

Fig. 5
Fig. 5

Round-trip time of the defect versus number of petals. Δπ/m, where m is odd.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ u ( θ , t ) t + u ( θ , t ) = D * 2 u ( θ , t ) θ 2 f { 1 γ cos [ u ( θ + Δ , t ) + φ 0 ] } ,
f ( I ) = S tanh ( g I ) .
T τ m / ( 1 + D * m 2 ) .

Metrics