Abstract

We show that electrostriction contributes significantly to self-action effects in optical fibers, adding 19% to the nonlinear refractive index for fields that vary slowly compared with the ~ 1-ns time scale of the acoustic response. Electrostriction also modifies the tensor nature of the nonlinear-optical response. The electrostrictive nonlinearity is the origin of the observed difference between measurements of n2 with cw and mode-locked lasers.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  2. R. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
    [CrossRef]
  3. K. Kim, R. Stolen, W. Reed, K. Quoi, Opt. Lett. 19, 257 (1994).
    [CrossRef] [PubMed]
  4. B. Crosignani, S. Piazolla, P. Spano, P. Di Porto, Opt. Lett. 10, 89 (1985).
    [CrossRef] [PubMed]
  5. T. Morioka, M. Saruwatari, Electron. Lett. 23, 1330 (1987).
    [CrossRef]
  6. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, M. Nishimura, Opt. Lett. 20, 988 (1995).
    [CrossRef] [PubMed]
  7. P. Mamyshev, S. Chernikov, Sov. Lightwave Commun. 2, 97 (1992).
  8. E. Dianov, A. Luchnikov, A. Pilipetskii, A. Starodumov, Opt. Lett. 15, 314 (1990).
    [CrossRef] [PubMed]
  9. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  10. P. K. A. Wai, C. R. Menyuk, H. H. Chen, Opt. Lett. 16, 1735 (1991).
    [CrossRef] [PubMed]
  11. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
    [CrossRef]
  12. A. J. Stentz, “Aspects of the generation and propagation of solitons in optical fibers,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1995).

1995

1994

1992

P. Mamyshev, S. Chernikov, Sov. Lightwave Commun. 2, 97 (1992).

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

1991

1990

1987

T. Morioka, M. Saruwatari, Electron. Lett. 23, 1330 (1987).
[CrossRef]

1985

1978

R. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Bergano, N. S.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Chen, H. H.

Chernikov, S.

P. Mamyshev, S. Chernikov, Sov. Lightwave Commun. 2, 97 (1992).

Crosignani, B.

Di Porto, P.

Dianov, E.

Evangelides, S. G.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Gordon, J. P.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Kato, T.

Kim, K.

Lin, C.

R. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Luchnikov, A.

Mamyshev, P.

P. Mamyshev, S. Chernikov, Sov. Lightwave Commun. 2, 97 (1992).

Menyuk, C. R.

Mollenauer, L. F.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Morioka, T.

T. Morioka, M. Saruwatari, Electron. Lett. 23, 1330 (1987).
[CrossRef]

Nishimura, M.

Piazolla, S.

Pilipetskii, A.

Quoi, K.

Reed, W.

Saruwatari, M.

T. Morioka, M. Saruwatari, Electron. Lett. 23, 1330 (1987).
[CrossRef]

Sasaoka, E.

Spano, P.

Starodumov, A.

Stentz, A. J.

A. J. Stentz, “Aspects of the generation and propagation of solitons in optical fibers,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1995).

Stolen, R.

Suetsugu, Y.

Takagi, M.

Wai, P. K. A.

Electron. Lett.

T. Morioka, M. Saruwatari, Electron. Lett. 23, 1330 (1987).
[CrossRef]

J. Lightwave Technol.

S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, J. Lightwave Technol. 10, 28 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev. A

R. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Sov. Lightwave Commun.

P. Mamyshev, S. Chernikov, Sov. Lightwave Commun. 2, 97 (1992).

Other

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

A. J. Stentz, “Aspects of the generation and propagation of solitons in optical fibers,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Magnitude of the electrostrictive nonlinearity Δn(max) relative to the fast nonresonant electronic contribution for linearly polarized light as a function of pulse width (FWHM) for a fiber with mode field radius a = 4.5 μm and n2(fast) = 2.96 × 10−16 cm2/W.

Tables (1)

Tables Icon

Table 1 Effective Nonlinearity Factor

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δ n ˜ ( t ) = ( / ρ ) Δ ρ ˜ ( t ) / 2 n = 1 2 n ( / ρ ) 0 t d t h ( t t ) | E ˜ ( t ) | 2 .
2 Δ ρ ˜ t 2 Γ 2 Δ ρ ˜ t υ 2 2 Δ ρ ˜ = γ e 4 π 2 | E ˜ | 2 .
Δ n ( Ω ) = n 2 ( str ) I 0 B ( Ω ) H ( Ω ) , n 2 ( str ) = 1 8 1 c ρ 0 ( γ e n υ ) 2 ,
Δ n ˜ ( t ) = n 2 ( str ) I 0 + B ( Ω ) H ( Ω ) exp ( i Ω t ) d ( Ω / 2 π ) .
H ( Ω ) = ν 2 0 x 3 exp ( x 2 / 2 ) ( ν 2 x 2 g 2 ) + i g 2 d x ,
P i ( str ) ( ω s ) = 3 χ ( str ) j | E j ( ω p ) | 2 E i ( ω s ) ,
P x NL ( ω p ) = 3 χ ( 3 ) ( 1 + η ) × [ | E x ( ω p ) | 2 + ( 2 / 3 + η ) ( 1 + η ) | E y ( ω p ) | 2 ] E x ( ω p ) ,
P x NL ( ω s ) = 6 χ ( 3 ) ( 1 + η / 2 ) × [ | E x ( ω p ) | 2 + ( 1 / 3 + η / 2 ) ( 1 + η / 2 ) | E y ( ω p ) | 2 ] E x ( ω s ) .
Δ n x = n 2 ( fast ) I 0 [ κ f + κ ( 1 f ) ] ,
Δ n y = n 2 ( fast ) I 0 [ κ ( 1 f ) + κ f ] ,
Δ n = 0 1 [ Δ n x f + Δ n y ( 1 f ) ] p ( f ) d f κ eff n 2 ( fast ) I 0 .
κ eff ( random pol . ) = ( 2 κ + κ ) / 3 .
κ eff ( unpol . ) = ( κ + κ ) / 2 .
Δ ϕ NL ( t ) = 2 π λ L m m + 1 { 2 n 2 ( fast ) + n 2 ( str ) Re [ H ( Ω 0 ) ] } I 0 cos ( Ω 0 t + φ )
η = 4 { [ n 2 ( reported ) / n 2 ( fast ) ] 1 } / 3 = 0 . 176 .

Metrics