Abstract

Through analysis of transient autocorrelation traces, we show that intracavity dispersion significantly affects the number of initially oscillating modes as well as the buildup of passive mode locking in picosecond and femtosecond lasers.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz, T. Brabec, Ch. Spielmann, Opt. Lett. 16, 235 (1991).
    [CrossRef] [PubMed]
  2. H. A. Haus, E. P. Ippen, Opt. Lett. 161331 (1991).
    [CrossRef] [PubMed]
  3. J. Hermann, J. Opt. Soc. Am. B 11, 496 (1994).
    [CrossRef]
  4. S. Chen, J. Wang, Opt. Lett. 16, 1689 (1991).
    [CrossRef] [PubMed]
  5. C.-J. Chen, P. K. A. Wai, C. R. Menyuk, Opt. Lett. 20, 350 (1995).
    [CrossRef] [PubMed]
  6. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
    [CrossRef]
  7. D. J. Bradley, G. H. C. New, Proc. IEEE 62, 313 (1974).
    [CrossRef]
  8. H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
    [CrossRef]
  9. M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 49 (1970).
  10. C.-L. Pan, C.-D. Hwang, J.-C. Kuo, J.-M. Shieh, K.-H. Wu, Opt. Lett. 17, 1445 (1992).
  11. J.-C. Kuo, J.-M. Shieh, C.-D. Hwang, C.-S. Chang, C.-L. Pan, Opt. Lett. 17, 334 (1992).
    [CrossRef] [PubMed]
  12. N.-W. Pu, J.-M. Shieh, Y. Lai, C.-L. Pan, Opt. Lett. 20, 163 (1995).
    [CrossRef] [PubMed]
  13. Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 47, 602 (1985).
    [CrossRef]
  14. H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
    [CrossRef]
  15. F. X. Kärtner, U. Keller, Opt. Lett. 20, 16 (1995).
    [CrossRef] [PubMed]
  16. J.-M. Shieh, F. Ganikhanov, K.-H. Lin, W.-F. Hsieh, C.-L. Pan, J. Opt. Soc. Am. B 12, 945 (1995).
    [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  18. J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 19, 1149 (1994).
    [PubMed]

1995 (4)

1994 (2)

1992 (3)

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

C.-L. Pan, C.-D. Hwang, J.-C. Kuo, J.-M. Shieh, K.-H. Wu, Opt. Lett. 17, 1445 (1992).

J.-C. Kuo, J.-M. Shieh, C.-D. Hwang, C.-S. Chang, C.-L. Pan, Opt. Lett. 17, 334 (1992).
[CrossRef] [PubMed]

1991 (3)

1985 (1)

Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 47, 602 (1985).
[CrossRef]

1975 (1)

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

1974 (1)

D. J. Bradley, G. H. C. New, Proc. IEEE 62, 313 (1974).
[CrossRef]

1970 (2)

H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
[CrossRef]

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 49 (1970).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Brabec, T.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

F. Krausz, T. Brabec, Ch. Spielmann, Opt. Lett. 16, 235 (1991).
[CrossRef] [PubMed]

Bradley, D. J.

D. J. Bradley, G. H. C. New, Proc. IEEE 62, 313 (1974).
[CrossRef]

Chang, C.-S.

Chen, C.-J.

Chen, S.

Chen, Y. C.

Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 47, 602 (1985).
[CrossRef]

Curley, P. F.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

Duguay, M. A.

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 49 (1970).

Fermann, M. E.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

Ganikhanov, F.

Hansen, J. W.

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 49 (1970).

Haus, H. A.

Hercher, M.

H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
[CrossRef]

Hermann, J.

J. Hermann, J. Opt. Soc. Am. B 11, 496 (1994).
[CrossRef]

Hofer, M.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

Hsieh, W.-F.

Huang, C.-P.

Hwang, C.-D.

C.-L. Pan, C.-D. Hwang, J.-C. Kuo, J.-M. Shieh, K.-H. Wu, Opt. Lett. 17, 1445 (1992).

J.-C. Kuo, J.-M. Shieh, C.-D. Hwang, C.-S. Chang, C.-L. Pan, Opt. Lett. 17, 334 (1992).
[CrossRef] [PubMed]

Ippen, E. P.

Kapteyn, H. C.

Kärtner, F. X.

Keller, U.

Krausz, F.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

F. Krausz, T. Brabec, Ch. Spielmann, Opt. Lett. 16, 235 (1991).
[CrossRef] [PubMed]

Kuo, J.-C.

J.-C. Kuo, J.-M. Shieh, C.-D. Hwang, C.-S. Chang, C.-L. Pan, Opt. Lett. 17, 334 (1992).
[CrossRef] [PubMed]

C.-L. Pan, C.-D. Hwang, J.-C. Kuo, J.-M. Shieh, K.-H. Wu, Opt. Lett. 17, 1445 (1992).

Lai, Y.

Lin, K.-H.

Liu, J. M.

Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 47, 602 (1985).
[CrossRef]

Menyuk, C. R.

Murnane, M. M.

New, G. H. C.

D. J. Bradley, G. H. C. New, Proc. IEEE 62, 313 (1974).
[CrossRef]

Ober, M. H.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

Pan, C.-L.

Pike, H. A.

H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
[CrossRef]

Pu, N.-W.

Schmidt, A. J.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

Shapiro, S. L.

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 49 (1970).

Shieh, J.-M.

Spielmann, C.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

Spielmann, Ch.

Taft, G.

Wai, P. K. A.

Wang, J.

Wintner, E.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

Wu, K.-H.

C.-L. Pan, C.-D. Hwang, J.-C. Kuo, J.-M. Shieh, K.-H. Wu, Opt. Lett. 17, 1445 (1992).

Zhou, J.

Appl. Phys. Lett. (1)

Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 47, 602 (1985).
[CrossRef]

IEEE J. Quantum Electron. (2)

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 23, 2097 (1992).
[CrossRef]

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quantum Electron. QE-6, 49 (1970).

J. Appl. Phys. (2)

H. A. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (9)

Proc. IEEE (1)

D. J. Bradley, G. H. C. New, Proc. IEEE 62, 313 (1974).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transient autocorrelation traces for the laser at τd = 5 μs after the laser onset. The open squares and filled circles are experimental data points for the laser with and without prisms, respectively. The solid, short-dashed, and long-dashed curves are curve-fitting results for full width at half-maximum (FWHM) 880 ps, peak 0.99, with prisms; FWHM 2000 ps, peak 1, no prisms; and FWHM 25 ps, respectively. The inset shows curve fitting of the coherent spike of the trace corresponding to the femtosecond laser.

Fig. 2
Fig. 2

Transient autocorrelation traces for the laser at τd = 30 μs after the laser onset. The open squares and filled circles are experimental data points for the laser with and without prisms. The solid curve and the dashed line are curve-fitting results for the shoulders of the autocorrelation traces for the above two cases, respectively. For the solid curve, FWHM 400 ps and peak 0.86, and for the dashed line, FWHM 2000 ps and peak 1.0.

Fig. 3
Fig. 3

Inverse contrast ratios R−1 for the laser in several configurations are plotted as a function of delay time after the laser onset: solid curve, with prisms; short-dashed curve, cw (with or without prisms); long-dashed curve, without prisms; ▲, partially compensated. The shapes are data points.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ P ¯ ( 0 ) > 1 ln ( m i ) T r T c

Metrics