Abstract

We report the demonstration of what we believe is the first electro-optically cavity-dumped short-pulse Ti:sapphire oscillator. By designing a novel ultrabroadband, zero-dispersion, zero-insertion-loss polarizer we have obtained single-pulse energies of >200 nJ directly from the oscillator at a repetition rate of 1 kHz. The pulse duration is <20 fs with >10 MW peak power and high contrast (>2000) between the pulses immediately preceding and following the main pulse. This system is well suited for white-light continuum generation and seeding multipass or regenerative amplifiers.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a general review of Ti:sapphire lasers, see C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
    [CrossRef]
  2. M. Ramaswamy, M. Ulman, J. Paye, J. G. Fujimoto, Opt. Lett. 18, 1822 (1993).
    [CrossRef] [PubMed]
  3. M. S. Pshenichnikov, W. P. de Boeij, D. A. Wiersma, Opt. Lett. 19, 572 (1994).
    [CrossRef] [PubMed]
  4. H. A. Haus, E. P. Ippen, Opt. Lett. 16, 1331 (1991).
    [CrossRef] [PubMed]
  5. Q. Z. Wang, in The Supercontinuum Laser Source, R. Alfano, ed. (Springer-Verlag, New York, 1989), pp. 40–58.
  6. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
    [CrossRef] [PubMed]
  7. Manufactured by Alpine Research Optics and CVI Laser Corporation.

1994 (2)

For a general review of Ti:sapphire lasers, see C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

M. S. Pshenichnikov, W. P. de Boeij, D. A. Wiersma, Opt. Lett. 19, 572 (1994).
[CrossRef] [PubMed]

1993 (2)

1991 (1)

Asaki, M. T.

Brabec, T.

For a general review of Ti:sapphire lasers, see C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Curley, P. F.

For a general review of Ti:sapphire lasers, see C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

de Boeij, W. P.

Fujimoto, J. G.

Garvey, D.

Haus, H. A.

Huang, C.

Ippen, E. P.

Kapteyn, H. C.

Krausz, F.

For a general review of Ti:sapphire lasers, see C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Murnane, M. M.

Paye, J.

Pshenichnikov, M. S.

Ramaswamy, M.

Spielmann, C.

For a general review of Ti:sapphire lasers, see C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Ulman, M.

Wang, Q. Z.

Q. Z. Wang, in The Supercontinuum Laser Source, R. Alfano, ed. (Springer-Verlag, New York, 1989), pp. 40–58.

Wiersma, D. A.

Zhou, J.

IEEE J. Quantum Electron. (1)

For a general review of Ti:sapphire lasers, see C. Spielmann, P. F. Curley, T. Brabec, F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).
[CrossRef]

Opt. Lett. (4)

Other (2)

Q. Z. Wang, in The Supercontinuum Laser Source, R. Alfano, ed. (Springer-Verlag, New York, 1989), pp. 40–58.

Manufactured by Alpine Research Optics and CVI Laser Corporation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the cavity design. PC, Pockels cell consisting of a 19-mm KDP crystal with solgel coatings (Cleveland Crystals); P1, P2 fused-silica prisms; P3–P5, quartz prisms (Karl Lambrecht); M1, M2, 20-cm radius-of-curvature mirrors; OC, 1% output coupler; HV, high-voltage driver (Fast Transitions Model 5001); L1, Ar+-laser focusing lens with a focal length of 19.6 cm; PD, photodiode; Ti:sap, 4.75-mm path-length 0.15%-doped Ti:sapphire crystal (Union Carbide). All optics except for P3–P5 are from CVI East Laser Corporation.

Fig. 2
Fig. 2

Interferometric autocorrelation of the oscillator output. The fit yields an intensity FWHM of 17 fs for a sech2 pulse shape. The slight asymmetry is instrument related.

Fig. 3
Fig. 3

Cavity dynamics as seen through the output coupler: (a) Fast-oscilloscope trace showing the sharp drop in laser power from one pulse to the next, (b) Oscilloscope trace showing the power drop after cavity dumping and the oscillator's recovery.

Metrics