Abstract

The intensity of light radiated from a fiber-optic light tap is observed to depend sensitively on the phase difference between LP01 and LP02 modes in a few-mode fiber. This observation is used to design a novel dual-mode interferometer in which light loss through the light tap is monitored, eliminating the need for a bulky spatial filter at the exit end of the fiber. Application of the device as an interferometric temperature sensor is described.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Layton, J. A. Bucaro, Appl. Opt. 18, 666 (1979).
    [CrossRef] [PubMed]
  2. B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, Opt. Lett. 12, 729 (1987).
    [CrossRef] [PubMed]
  3. M. Spajer, Opt. Lett. 13, 239 (1988).
    [CrossRef] [PubMed]
  4. A. Sharma, R. Posey, Opt. Commun. 124, 111 (1996).
    [CrossRef]
  5. M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
    [CrossRef]
  6. D. Du Toit, H. Roberts, Proc. SPIE 991, 170 (1980).
  7. W. Beck, Laser Focus 23 (11), 138 (1987).
  8. D. Jackson, J. Jones, Opt. Acta 33, 1469 (1986).
    [CrossRef]
  9. J. Horner, ed., Optical Signal Processing (Academic, San Diego, Calif., 1987).
  10. H. Taylor, Proc. IEEE 75, 1524 (1987).
    [CrossRef]
  11. A. Ghosh, S. D. Allen, P. Paparao, Proc. SPIE 1058, 62 (1990).
  12. K. Imen, C. H. Lee, Y. Y. Yang, S. D. Allen, A. Ghosh, Opt. Lett. 15, 950 (1990).
    [CrossRef] [PubMed]
  13. J. R. Bettis, Appl. Opt. 31, 3448 (1992).
    [CrossRef] [PubMed]
  14. T. Okoshi, Optical Fibers (Academic, New York, 1982).
  15. P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
    [CrossRef]
  16. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), p. 323.

1996 (1)

A. Sharma, R. Posey, Opt. Commun. 124, 111 (1996).
[CrossRef]

1992 (1)

1990 (2)

1988 (1)

1987 (4)

H. Taylor, Proc. IEEE 75, 1524 (1987).
[CrossRef]

P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
[CrossRef]

B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, Opt. Lett. 12, 729 (1987).
[CrossRef] [PubMed]

W. Beck, Laser Focus 23 (11), 138 (1987).

1986 (2)

D. Jackson, J. Jones, Opt. Acta 33, 1469 (1986).
[CrossRef]

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

1980 (1)

D. Du Toit, H. Roberts, Proc. SPIE 991, 170 (1980).

1979 (1)

Alfano, R. R.

P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
[CrossRef]

Allen, S. D.

Baldeck, P. L.

P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
[CrossRef]

Beck, W.

W. Beck, Laser Focus 23 (11), 138 (1987).

Bettis, J. R.

Blake, J. N.

Bucaro, J. A.

Carquille, B.

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

Du Toit, D.

D. Du Toit, H. Roberts, Proc. SPIE 991, 170 (1980).

Ghosh, A.

Huang, S. Y.

Imen, K.

Jackson, D.

D. Jackson, J. Jones, Opt. Acta 33, 1469 (1986).
[CrossRef]

Jones, J.

D. Jackson, J. Jones, Opt. Acta 33, 1469 (1986).
[CrossRef]

Kim, B. Y.

Layton, M. R.

Lee, C. H.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), p. 323.

Mailotte, H. J.

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

Okoshi, T.

T. Okoshi, Optical Fibers (Academic, New York, 1982).

Paparao, P.

A. Ghosh, S. D. Allen, P. Paparao, Proc. SPIE 1058, 62 (1990).

Posey, R.

A. Sharma, R. Posey, Opt. Commun. 124, 111 (1996).
[CrossRef]

Roberts, H.

D. Du Toit, H. Roberts, Proc. SPIE 991, 170 (1980).

Sharma, A.

A. Sharma, R. Posey, Opt. Commun. 124, 111 (1996).
[CrossRef]

Shaw, H. J.

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), p. 323.

Spajer, M.

M. Spajer, Opt. Lett. 13, 239 (1988).
[CrossRef] [PubMed]

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

Taylor, H.

H. Taylor, Proc. IEEE 75, 1524 (1987).
[CrossRef]

Yang, Y. Y.

Appl. Opt. (2)

J. Lightwave Technol. (1)

P. L. Baldeck, R. R. Alfano, J. Lightwave Technol. LT-5, 1712 (1987).
[CrossRef]

Laser Focus (1)

W. Beck, Laser Focus 23 (11), 138 (1987).

Opt. Acta (1)

D. Jackson, J. Jones, Opt. Acta 33, 1469 (1986).
[CrossRef]

Opt. Commun. (2)

A. Sharma, R. Posey, Opt. Commun. 124, 111 (1996).
[CrossRef]

M. Spajer, B. Carquille, H. J. Mailotte, Opt. Commun. 60, 261 (1986).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

H. Taylor, Proc. IEEE 75, 1524 (1987).
[CrossRef]

Proc. SPIE (2)

A. Ghosh, S. D. Allen, P. Paparao, Proc. SPIE 1058, 62 (1990).

D. Du Toit, H. Roberts, Proc. SPIE 991, 170 (1980).

Other (3)

J. Horner, ed., Optical Signal Processing (Academic, San Diego, Calif., 1987).

T. Okoshi, Optical Fibers (Academic, New York, 1982).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), p. 323.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup used to detect the LP01–LP02 phase-dependent light loss from a light tap (T). The two modes intermittently form ring- and disk-shaped transverse intensity distributions inside the core, with a beat length LB of approximately 100 μm. Loss is maximum when the ring-shaped intensity distribution coincides with the position of the light tap. D is a silicon photocell detector in close contact with the light tap.

Fig. 2
Fig. 2

Loss spectrum from the light tap from LP01–LP02 interference of quasi-white light produced by supercontinuum generation in a separate 100-m-long fiber. This spectrally continuous emission is then introduced into the intermodal interferometer described in Fig. 1.

Fig. 3
Fig. 3

Measured loss of 633-nm He–Ne laser light from the light tap in an LP01–LP02 interferometric temperature sensor. The sensor design is similar to the schematic of Fig. 1. A 60-cm-long fiber between the input end and the light tap is heated in a straight glass oven, and light loss is sensed by a detector in close contact with the tap.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L [ β 01 ( λ ) β 02 ( λ ) ] = 2 ( m + 1 / 2 ) π ,
δ λ = 2 π / [ L ( Δ β ) / λ ] ,
δ T [ ( Δ β ) 1 ( Δ β ) / T + l 1 l / T ] = l 1 2 π / ( Δ β ) .

Metrics