Abstract

New modulation-doped quantum semiconductor structures that exhibit strong Fano interference effects have been designed and demonstrated. Intersubband absorption experiments clearly demonstrate the ability to engineer Fano resonances and their evolution toward bound-to-bound transitions as the continuum is progressively modified under the action of an electric field normal to the layers.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, Phys. Rev. 124, 1866 (1961).
    [CrossRef]
  2. L. A. O. Nunes, L. Ioriatti, L. T. Florez, J. P. Harbinson, Phys. Rev. B 47, 13011 (1993); D. Y. Oberli, G. Böhm, G. Weimann, Phys. Rev. B 49, 5757 (1994); theoretical predictions of Fano effects in heterostructures can be found inK. Mashke, P. Thomas, E. O. Göbel, Phys. Rev. Lett. 67, 2646 (1991); K. J. Jin, S. H. Pan, G. Z. Yang, Phys. Rev. B 51, 9764 (1995).
    [CrossRef]
  3. U. Siegner, M. A. Mycek, S. Glutsch, D. S. Chemla, Phys. Rev. B 51, 4953 (1995).
    [CrossRef]
  4. S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
    [CrossRef] [PubMed]
  5. A. Imamoglu, R. J. Ram, Opt. Lett. 19,1744 (1994).
    [CrossRef] [PubMed]
  6. J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, K. W. West, Phys. Rev. Lett. 71, 3573 (1993).
    [CrossRef] [PubMed]
  7. J. Faist, C. Sirtori, F. Capasso, L. Pfeiffer, K. W. West, Appl. Phys. Lett. 64, 872 (1994).
    [CrossRef]
  8. The phase of the wave function is fixed by the AlGaAs barrier on the right-hand side of Fig. 1, assumed to be infinitely thick.
  9. A small baseline correction (~λ3) is subtracted to take into account the free-carrier absorption of the electrons that are removed from the quantum wells and moved into the Al0.165Ga0.835As barrier by the field at U = −5 V.
  10. The spectra were calculated self-consistently in the envelope function approximation, incorporating the nonparabolicity by an approach described inC. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994). The discontinuity ΔEc = 0.298 eV for the aluminum content x = 33%, ΔEc = 0.145 eV for x = 16.5%, the nonparabolicity coefficient γ = 5.8 × 10−19 m2, and the effective mass m*/m0 = 0.067 + 0.057x were used.
    [CrossRef]
  11. F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
    [CrossRef]

1995 (1)

U. Siegner, M. A. Mycek, S. Glutsch, D. S. Chemla, Phys. Rev. B 51, 4953 (1995).
[CrossRef]

1994 (3)

A. Imamoglu, R. J. Ram, Opt. Lett. 19,1744 (1994).
[CrossRef] [PubMed]

J. Faist, C. Sirtori, F. Capasso, L. Pfeiffer, K. W. West, Appl. Phys. Lett. 64, 872 (1994).
[CrossRef]

The spectra were calculated self-consistently in the envelope function approximation, incorporating the nonparabolicity by an approach described inC. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994). The discontinuity ΔEc = 0.298 eV for the aluminum content x = 33%, ΔEc = 0.145 eV for x = 16.5%, the nonparabolicity coefficient γ = 5.8 × 10−19 m2, and the effective mass m*/m0 = 0.067 + 0.057x were used.
[CrossRef]

1993 (2)

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, K. W. West, Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

L. A. O. Nunes, L. Ioriatti, L. T. Florez, J. P. Harbinson, Phys. Rev. B 47, 13011 (1993); D. Y. Oberli, G. Böhm, G. Weimann, Phys. Rev. B 49, 5757 (1994); theoretical predictions of Fano effects in heterostructures can be found inK. Mashke, P. Thomas, E. O. Göbel, Phys. Rev. Lett. 67, 2646 (1991); K. J. Jin, S. H. Pan, G. Z. Yang, Phys. Rev. B 51, 9764 (1995).
[CrossRef]

1992 (1)

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
[CrossRef]

1989 (1)

S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
[CrossRef] [PubMed]

1961 (1)

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Capasso, F.

J. Faist, C. Sirtori, F. Capasso, L. Pfeiffer, K. W. West, Appl. Phys. Lett. 64, 872 (1994).
[CrossRef]

The spectra were calculated self-consistently in the envelope function approximation, incorporating the nonparabolicity by an approach described inC. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994). The discontinuity ΔEc = 0.298 eV for the aluminum content x = 33%, ΔEc = 0.145 eV for x = 16.5%, the nonparabolicity coefficient γ = 5.8 × 10−19 m2, and the effective mass m*/m0 = 0.067 + 0.057x were used.
[CrossRef]

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, K. W. West, Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
[CrossRef]

Chemla, D. S.

U. Siegner, M. A. Mycek, S. Glutsch, D. S. Chemla, Phys. Rev. B 51, 4953 (1995).
[CrossRef]

Cho, A. Y.

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
[CrossRef]

Chu, S. N. G.

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
[CrossRef]

Faist, J.

The spectra were calculated self-consistently in the envelope function approximation, incorporating the nonparabolicity by an approach described inC. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994). The discontinuity ΔEc = 0.298 eV for the aluminum content x = 33%, ΔEc = 0.145 eV for x = 16.5%, the nonparabolicity coefficient γ = 5.8 × 10−19 m2, and the effective mass m*/m0 = 0.067 + 0.057x were used.
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, L. Pfeiffer, K. W. West, Appl. Phys. Lett. 64, 872 (1994).
[CrossRef]

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, K. W. West, Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
[CrossRef]

Fano, U.

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Florez, L. T.

L. A. O. Nunes, L. Ioriatti, L. T. Florez, J. P. Harbinson, Phys. Rev. B 47, 13011 (1993); D. Y. Oberli, G. Böhm, G. Weimann, Phys. Rev. B 49, 5757 (1994); theoretical predictions of Fano effects in heterostructures can be found inK. Mashke, P. Thomas, E. O. Göbel, Phys. Rev. Lett. 67, 2646 (1991); K. J. Jin, S. H. Pan, G. Z. Yang, Phys. Rev. B 51, 9764 (1995).
[CrossRef]

Glutsch, S.

U. Siegner, M. A. Mycek, S. Glutsch, D. S. Chemla, Phys. Rev. B 51, 4953 (1995).
[CrossRef]

Harbinson, J. P.

L. A. O. Nunes, L. Ioriatti, L. T. Florez, J. P. Harbinson, Phys. Rev. B 47, 13011 (1993); D. Y. Oberli, G. Böhm, G. Weimann, Phys. Rev. B 49, 5757 (1994); theoretical predictions of Fano effects in heterostructures can be found inK. Mashke, P. Thomas, E. O. Göbel, Phys. Rev. Lett. 67, 2646 (1991); K. J. Jin, S. H. Pan, G. Z. Yang, Phys. Rev. B 51, 9764 (1995).
[CrossRef]

Harris, S. E.

S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
[CrossRef] [PubMed]

Hutchinson, A. L.

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, K. W. West, Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
[CrossRef]

Imamoglu, A.

Ioriatti, L.

L. A. O. Nunes, L. Ioriatti, L. T. Florez, J. P. Harbinson, Phys. Rev. B 47, 13011 (1993); D. Y. Oberli, G. Böhm, G. Weimann, Phys. Rev. B 49, 5757 (1994); theoretical predictions of Fano effects in heterostructures can be found inK. Mashke, P. Thomas, E. O. Göbel, Phys. Rev. Lett. 67, 2646 (1991); K. J. Jin, S. H. Pan, G. Z. Yang, Phys. Rev. B 51, 9764 (1995).
[CrossRef]

Mycek, M. A.

U. Siegner, M. A. Mycek, S. Glutsch, D. S. Chemla, Phys. Rev. B 51, 4953 (1995).
[CrossRef]

Nunes, L. A. O.

L. A. O. Nunes, L. Ioriatti, L. T. Florez, J. P. Harbinson, Phys. Rev. B 47, 13011 (1993); D. Y. Oberli, G. Böhm, G. Weimann, Phys. Rev. B 49, 5757 (1994); theoretical predictions of Fano effects in heterostructures can be found inK. Mashke, P. Thomas, E. O. Göbel, Phys. Rev. Lett. 67, 2646 (1991); K. J. Jin, S. H. Pan, G. Z. Yang, Phys. Rev. B 51, 9764 (1995).
[CrossRef]

Pfeiffer, L.

J. Faist, C. Sirtori, F. Capasso, L. Pfeiffer, K. W. West, Appl. Phys. Lett. 64, 872 (1994).
[CrossRef]

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, K. W. West, Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

Ram, R. J.

Scandolo, S.

The spectra were calculated self-consistently in the envelope function approximation, incorporating the nonparabolicity by an approach described inC. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994). The discontinuity ΔEc = 0.298 eV for the aluminum content x = 33%, ΔEc = 0.145 eV for x = 16.5%, the nonparabolicity coefficient γ = 5.8 × 10−19 m2, and the effective mass m*/m0 = 0.067 + 0.057x were used.
[CrossRef]

Siegner, U.

U. Siegner, M. A. Mycek, S. Glutsch, D. S. Chemla, Phys. Rev. B 51, 4953 (1995).
[CrossRef]

Sirtori, C.

J. Faist, C. Sirtori, F. Capasso, L. Pfeiffer, K. W. West, Appl. Phys. Lett. 64, 872 (1994).
[CrossRef]

The spectra were calculated self-consistently in the envelope function approximation, incorporating the nonparabolicity by an approach described inC. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994). The discontinuity ΔEc = 0.298 eV for the aluminum content x = 33%, ΔEc = 0.145 eV for x = 16.5%, the nonparabolicity coefficient γ = 5.8 × 10−19 m2, and the effective mass m*/m0 = 0.067 + 0.057x were used.
[CrossRef]

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
[CrossRef]

Sivco, D. L.

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
[CrossRef]

West, K. W.

J. Faist, C. Sirtori, F. Capasso, L. Pfeiffer, K. W. West, Appl. Phys. Lett. 64, 872 (1994).
[CrossRef]

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, K. W. West, Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Faist, C. Sirtori, F. Capasso, L. Pfeiffer, K. W. West, Appl. Phys. Lett. 64, 872 (1994).
[CrossRef]

Nature (1)

F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho, Nature (London) 358, 565 (1992).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Phys. Rev. B (3)

L. A. O. Nunes, L. Ioriatti, L. T. Florez, J. P. Harbinson, Phys. Rev. B 47, 13011 (1993); D. Y. Oberli, G. Böhm, G. Weimann, Phys. Rev. B 49, 5757 (1994); theoretical predictions of Fano effects in heterostructures can be found inK. Mashke, P. Thomas, E. O. Göbel, Phys. Rev. Lett. 67, 2646 (1991); K. J. Jin, S. H. Pan, G. Z. Yang, Phys. Rev. B 51, 9764 (1995).
[CrossRef]

U. Siegner, M. A. Mycek, S. Glutsch, D. S. Chemla, Phys. Rev. B 51, 4953 (1995).
[CrossRef]

The spectra were calculated self-consistently in the envelope function approximation, incorporating the nonparabolicity by an approach described inC. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994). The discontinuity ΔEc = 0.298 eV for the aluminum content x = 33%, ΔEc = 0.145 eV for x = 16.5%, the nonparabolicity coefficient γ = 5.8 × 10−19 m2, and the effective mass m*/m0 = 0.067 + 0.057x were used.
[CrossRef]

Phys. Rev. Lett. (2)

S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
[CrossRef] [PubMed]

J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, K. W. West, Phys. Rev. Lett. 71, 3573 (1993).
[CrossRef] [PubMed]

Other (2)

The phase of the wave function is fixed by the AlGaAs barrier on the right-hand side of Fig. 1, assumed to be infinitely thick.

A small baseline correction (~λ3) is subtracted to take into account the free-carrier absorption of the electrons that are removed from the quantum wells and moved into the Al0.165Ga0.835As barrier by the field at U = −5 V.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Conduction band diagram of a portion of the structure. The thicknesses and the doping used in this self-consistent calculation are those of sample A. The moduli squared of the wave functions of the n = 1 and n = 2 states are displayed. The modulo squared of the wave function in the continuum |Ψ〉 is represented as a gray-scale density plot. Points a, b, and c represent the final state energies corresponding to the onset of the continuum, the zero, and the maximum of the absorption spectrum (see Fig. 2). The shift between the maximum of the absorption and the position of the resonance Er is a feature characteristic of Fano interference.

Fig. 2
Fig. 2

(a) Solid curve, measured absorption spectrum for sample A with strong coupling and asymmetry. Points a, b, and c refer to the onset of the continuum, the zero and the maximum of the absorption (see Fig. 1). The dashed curve is the calculated spectrum. (b) Same for sample B. Note the shift between the absorption peak and the onset of the continuum, which is a feature specific to these samples that exhibit Fano interferences.

Fig. 3
Fig. 3

Absorption spectra of sample B for different applied bias, as indicated. The insets show the shape of the potential, along with the effective width L of the triangular well formed by the applied field. The positions of the bars correspond to the calculated transition energies; their height is proportional to the oscillator strength for each transition.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

q 2 Γ 1 c f 1 b Γ f 1 c ,

Metrics