Abstract

Experimental and theoretical investigation of a nonlinear response of a two-mode fiber interferometer to axial strain is described. It is discovered that the nonlinearity dramatically increases as the wavelength approaches the cutoff wavelength of the second-order mode (LP11).

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Blake, S. Y. Huang, B. Y. Kim, H. J. Shaw, Opt. Lett. 12, 732 (1987).
    [CrossRef] [PubMed]
  2. S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
    [CrossRef]
  3. A. M. Vengsarkar, B. R. Fogg, K. A. Murphy, R. O. Claus, Opt. Lett. 16, 464 (1991).
    [CrossRef] [PubMed]
  4. W. J. Bock, T. R. Woliǹski, Opt. Lett. 15, 1434 (1990).
    [CrossRef] [PubMed]
  5. K. Bohnert, G. C. de Wit, J. Nehring, J. Lightwave Technol 13, 94 (1995).
    [CrossRef]
  6. K. F. Klein, W. E. Heinlein, Electron. Lett. 18, 640 (1982).
    [CrossRef]
  7. R. B. Dyott, Electron. Lett. 26, 1721 (1990).
    [CrossRef]
  8. L. B. Jeunhomme, Single-Mode Fiber Optics (Marcel Dekker, New York, 1983), pp. 142–145.
  9. W. V. Sorin, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 106 (1986).
    [CrossRef] [PubMed]
  10. J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).
  11. S. M. Said, IEEE Trans. Microwave Theory Technol. MTT-33, 1110 (1985).
    [CrossRef]
  12. J. Blake, Opt. Lett. 17, 589 (1992).
    [CrossRef] [PubMed]
  13. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), pp. 383, 632–636.
  14. M. P. Varnham, D. N. Payne, A. J. Barlow, R. D. Birch, J. Lightwave Technol. 1, 332 (1983).
    [CrossRef]

1995 (1)

K. Bohnert, G. C. de Wit, J. Nehring, J. Lightwave Technol 13, 94 (1995).
[CrossRef]

1992 (1)

1991 (1)

1990 (3)

W. J. Bock, T. R. Woliǹski, Opt. Lett. 15, 1434 (1990).
[CrossRef] [PubMed]

S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

R. B. Dyott, Electron. Lett. 26, 1721 (1990).
[CrossRef]

1987 (1)

1986 (1)

1985 (1)

S. M. Said, IEEE Trans. Microwave Theory Technol. MTT-33, 1110 (1985).
[CrossRef]

1983 (1)

M. P. Varnham, D. N. Payne, A. J. Barlow, R. D. Birch, J. Lightwave Technol. 1, 332 (1983).
[CrossRef]

1982 (1)

K. F. Klein, W. E. Heinlein, Electron. Lett. 18, 640 (1982).
[CrossRef]

1969 (1)

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

Barlow, A. J.

M. P. Varnham, D. N. Payne, A. J. Barlow, R. D. Birch, J. Lightwave Technol. 1, 332 (1983).
[CrossRef]

Birch, R. D.

M. P. Varnham, D. N. Payne, A. J. Barlow, R. D. Birch, J. Lightwave Technol. 1, 332 (1983).
[CrossRef]

Blake, J.

Blake, J. N.

S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

J. N. Blake, S. Y. Huang, B. Y. Kim, H. J. Shaw, Opt. Lett. 12, 732 (1987).
[CrossRef] [PubMed]

Bock, W. J.

Bohnert, K.

K. Bohnert, G. C. de Wit, J. Nehring, J. Lightwave Technol 13, 94 (1995).
[CrossRef]

Claus, R. O.

de Wit, G. C.

K. Bohnert, G. C. de Wit, J. Nehring, J. Lightwave Technol 13, 94 (1995).
[CrossRef]

Dyott, R. B.

R. B. Dyott, Electron. Lett. 26, 1721 (1990).
[CrossRef]

Fogg, B. R.

Goell, J. E.

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

Heinlein, W. E.

K. F. Klein, W. E. Heinlein, Electron. Lett. 18, 640 (1982).
[CrossRef]

Huang, S. Y.

S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

J. N. Blake, S. Y. Huang, B. Y. Kim, H. J. Shaw, Opt. Lett. 12, 732 (1987).
[CrossRef] [PubMed]

Jeunhomme, L. B.

L. B. Jeunhomme, Single-Mode Fiber Optics (Marcel Dekker, New York, 1983), pp. 142–145.

Kim, B. Y.

Klein, K. F.

K. F. Klein, W. E. Heinlein, Electron. Lett. 18, 640 (1982).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), pp. 383, 632–636.

Murphy, K. A.

Nehring, J.

K. Bohnert, G. C. de Wit, J. Nehring, J. Lightwave Technol 13, 94 (1995).
[CrossRef]

Payne, D. N.

M. P. Varnham, D. N. Payne, A. J. Barlow, R. D. Birch, J. Lightwave Technol. 1, 332 (1983).
[CrossRef]

Said, S. M.

S. M. Said, IEEE Trans. Microwave Theory Technol. MTT-33, 1110 (1985).
[CrossRef]

Shaw, H. J.

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), pp. 383, 632–636.

Sorin, W. V.

Varnham, M. P.

M. P. Varnham, D. N. Payne, A. J. Barlow, R. D. Birch, J. Lightwave Technol. 1, 332 (1983).
[CrossRef]

Vengsarkar, A. M.

Woli?ski, T. R.

Bell Syst. Tech. J. (1)

J. E. Goell, Bell Syst. Tech. J. 48, 2133 (1969).

Electron. Lett. (2)

K. F. Klein, W. E. Heinlein, Electron. Lett. 18, 640 (1982).
[CrossRef]

R. B. Dyott, Electron. Lett. 26, 1721 (1990).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

S. M. Said, IEEE Trans. Microwave Theory Technol. MTT-33, 1110 (1985).
[CrossRef]

J. Lightwave Technol (1)

K. Bohnert, G. C. de Wit, J. Nehring, J. Lightwave Technol 13, 94 (1995).
[CrossRef]

J. Lightwave Technol. (2)

S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

M. P. Varnham, D. N. Payne, A. J. Barlow, R. D. Birch, J. Lightwave Technol. 1, 332 (1983).
[CrossRef]

Opt. Lett. (5)

Other (2)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), pp. 383, 632–636.

L. B. Jeunhomme, Single-Mode Fiber Optics (Marcel Dekker, New York, 1983), pp. 142–145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for measuring the strain response of a two-mode fiber-optic interferometer. TMF, two-mode fiber.

Fig. 2
Fig. 2

Interferometer output intensity versus elongation length δl for (a) x polarization and (b) y polarization.

Fig. 3
Fig. 3

Plots of A(V) and B(V) for an elliptical core fiber with an aspect ratio of 4/7. Experimental values of B(V) are plotted for the x- and the y-polarization components.

Fig. 4
Fig. 4

Calculated results of the interferometer output intensity versus elongation for an elliptical core fiber with a 7 μm × 4 μm core and a cutoff wavelength of 670 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 2 π l L B ,
L B = 2 π a 2 Δ f ( V , ) .
δ ϕ δ l 2 π L B 0 [ 1 l L B δ L B δ l | L B = L B 0 1 2 δ l δ δ l × ( l L B δ L B δ l ) | L B = L B 0 1 2 δ l ( 1 l L B δ L B δ l ) × 1 L B δ L B δ l | L B = L B 0 ] ,
δ ϕ δ l = 2 π L B 0 A ( V 0 ) [ 1 B ( V 0 ) δ l l 0 ] ,
A ( V ) 0 . 953 + 0 . 605 V f ( V , ) δ f ( V , ) δ V , B ( V ) 1 2 [ 0 . 605 V A ( V ) δ A ( V ) δ V + 1 A ( V ) ] .

Metrics