Abstract

We report the behavior of Autler–Townes splitting and production of a four-wave mixing (FWM) field in rubidium in the context of laser-induced transparency. Gain saturation of the FWM and simultaneous suppression of Autler–Townes splitting above a critical concentration are interpreted in terms of the odd-photon destructive interference effect. The results demonstrate that, when multimode lasers are used, odd-photon destructive interference significantly limits the high-efficiency and high-intensity FWM generation promised by early studies of laser-induced transparency.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Kocharovskaya, Y. Khanin, Soviet Phys. JETP 63, 945 (1986); Soviet Phys. JETP Lett. 48, 630 (1988); also seeP. Mandel, Contemp. Phys. 34, 235 (1993), and references therein.
    [CrossRef]
  2. S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
    [CrossRef] [PubMed]
  3. M. G. Payne, L. Deng, W. R. Garrett, “Theory of the effect of the odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization,”submitted toPhys. Rev. A.
  4. M. G. Payne, J. Y. Zhang, W. R. Garrett, Phys. Rev. A 48, 2334 (1993), and references therein.
    [CrossRef] [PubMed]
  5. L. Deng, J. Y. Zhang, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 73, 2035 (1994). (E2 should be 2–3 mJ in this paper.)
    [CrossRef] [PubMed]
  6. K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. A 45, 5152 (1990).
    [CrossRef]
  7. C. E. Moore, Atomic Energy Levels, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 35 (1958), Vol. III.
  8. G. S. Hurst, M. G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (IOP Publishing, Philadelphia, Pa., 1988).
  9. S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989); A. Imamoglu, S. E. Harris, Opt. Lett. 14, 1344 (1989).
    [CrossRef] [PubMed]
  10. S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
    [CrossRef] [PubMed]

1994 (1)

L. Deng, J. Y. Zhang, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 73, 2035 (1994). (E2 should be 2–3 mJ in this paper.)
[CrossRef] [PubMed]

1993 (1)

M. G. Payne, J. Y. Zhang, W. R. Garrett, Phys. Rev. A 48, 2334 (1993), and references therein.
[CrossRef] [PubMed]

1990 (2)

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. A 45, 5152 (1990).
[CrossRef]

1989 (2)

S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989); A. Imamoglu, S. E. Harris, Opt. Lett. 14, 1344 (1989).
[CrossRef] [PubMed]

S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
[CrossRef] [PubMed]

1986 (1)

O. Kocharovskaya, Y. Khanin, Soviet Phys. JETP 63, 945 (1986); Soviet Phys. JETP Lett. 48, 630 (1988); also seeP. Mandel, Contemp. Phys. 34, 235 (1993), and references therein.
[CrossRef]

Deng, L.

L. Deng, J. Y. Zhang, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 73, 2035 (1994). (E2 should be 2–3 mJ in this paper.)
[CrossRef] [PubMed]

M. G. Payne, L. Deng, W. R. Garrett, “Theory of the effect of the odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization,”submitted toPhys. Rev. A.

Field, J. E.

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

Garrett, W. R.

L. Deng, J. Y. Zhang, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 73, 2035 (1994). (E2 should be 2–3 mJ in this paper.)
[CrossRef] [PubMed]

M. G. Payne, J. Y. Zhang, W. R. Garrett, Phys. Rev. A 48, 2334 (1993), and references therein.
[CrossRef] [PubMed]

M. G. Payne, L. Deng, W. R. Garrett, “Theory of the effect of the odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization,”submitted toPhys. Rev. A.

Hakuta, K.

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. A 45, 5152 (1990).
[CrossRef]

Harris, S. E.

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989); A. Imamoglu, S. E. Harris, Opt. Lett. 14, 1344 (1989).
[CrossRef] [PubMed]

S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
[CrossRef] [PubMed]

Hurst, G. S.

G. S. Hurst, M. G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (IOP Publishing, Philadelphia, Pa., 1988).

Imamoglu, A.

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

Khanin, Y.

O. Kocharovskaya, Y. Khanin, Soviet Phys. JETP 63, 945 (1986); Soviet Phys. JETP Lett. 48, 630 (1988); also seeP. Mandel, Contemp. Phys. 34, 235 (1993), and references therein.
[CrossRef]

Kocharovskaya, O.

O. Kocharovskaya, Y. Khanin, Soviet Phys. JETP 63, 945 (1986); Soviet Phys. JETP Lett. 48, 630 (1988); also seeP. Mandel, Contemp. Phys. 34, 235 (1993), and references therein.
[CrossRef]

Marmet, L.

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. A 45, 5152 (1990).
[CrossRef]

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 35 (1958), Vol. III.

Payne, M. G.

L. Deng, J. Y. Zhang, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 73, 2035 (1994). (E2 should be 2–3 mJ in this paper.)
[CrossRef] [PubMed]

M. G. Payne, J. Y. Zhang, W. R. Garrett, Phys. Rev. A 48, 2334 (1993), and references therein.
[CrossRef] [PubMed]

M. G. Payne, L. Deng, W. R. Garrett, “Theory of the effect of the odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization,”submitted toPhys. Rev. A.

G. S. Hurst, M. G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (IOP Publishing, Philadelphia, Pa., 1988).

Stoicheff, B. P.

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. A 45, 5152 (1990).
[CrossRef]

Zhang, J. Y.

L. Deng, J. Y. Zhang, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 73, 2035 (1994). (E2 should be 2–3 mJ in this paper.)
[CrossRef] [PubMed]

M. G. Payne, J. Y. Zhang, W. R. Garrett, Phys. Rev. A 48, 2334 (1993), and references therein.
[CrossRef] [PubMed]

Phys. Rev. A (2)

M. G. Payne, J. Y. Zhang, W. R. Garrett, Phys. Rev. A 48, 2334 (1993), and references therein.
[CrossRef] [PubMed]

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. A 45, 5152 (1990).
[CrossRef]

Phys. Rev. Lett. (4)

S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989); A. Imamoglu, S. E. Harris, Opt. Lett. 14, 1344 (1989).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[CrossRef] [PubMed]

L. Deng, J. Y. Zhang, M. G. Payne, W. R. Garrett, Phys. Rev. Lett. 73, 2035 (1994). (E2 should be 2–3 mJ in this paper.)
[CrossRef] [PubMed]

S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
[CrossRef] [PubMed]

Soviet Phys. JETP (1)

O. Kocharovskaya, Y. Khanin, Soviet Phys. JETP 63, 945 (1986); Soviet Phys. JETP Lett. 48, 630 (1988); also seeP. Mandel, Contemp. Phys. 34, 235 (1993), and references therein.
[CrossRef]

Other (3)

M. G. Payne, L. Deng, W. R. Garrett, “Theory of the effect of the odd-photon destructive interference on optical shifts in resonantly enhanced multiphoton excitation and ionization,”submitted toPhys. Rev. A.

C. E. Moore, Atomic Energy Levels, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 35 (1958), Vol. III.

G. S. Hurst, M. G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (IOP Publishing, Philadelphia, Pa., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Relevant rubidium energy-level diagram with laser coupling schemes. Level assignments: |1〉, 5s1/2; |2〉, 6d5/2; |3〉, 5p3/2. Splittings are exaggerated.

Fig. 2
Fig. 2

Multiphoton ionization signal versus the wavelength of the first laser. (a) First laser only. (b) Autler–Townes splitting is clearly seen at T = 105 °C (5.8 × 1012 cm−3). (c) Autler–Townes splitting disappears completely at T = 230 °C (2.3 × 1015 cm−3).

Fig. 3
Fig. 3

Plot of the FWM signal versus P(Torr)/T(K). Dashed curve, theoretical curve based on theory of the three-photon destructive interference (see Ref. 3). Inset: the low-concentration behavior. Curve fit, constant × (P/T)2.

Metrics