Abstract

We present a theoretical and experimental analysis of the polarization dependence of a two-mode-fiber acousto-optic device, taking into account the residual stress in the fiber and the ellipticity of the core. We successfully demonstrate the suppression of the polarization dependence by relieving the residual stress, using thermal annealing.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
    [CrossRef] [PubMed]
  2. D. Ostling, H. E. Engan, Opt. Lett. 20, 1247 (1995).
    [CrossRef] [PubMed]
  3. S. H. Yun, I. K. Hwang, B. Y. Kim, Opt. Lett. 21, 27 (1996).
    [CrossRef] [PubMed]
  4. H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1335 (1994).
    [CrossRef]
  5. W. T. Anderson, J. Lightwave Technol. 2, 191 (1984).
    [CrossRef]
  6. H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
    [CrossRef]
  7. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), pp. 383, 632–636.
  8. K. Brugger, Appl. Opt. 10, 437 (1971).
    [CrossRef] [PubMed]
  9. K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
    [CrossRef]
  10. P. A. Tick, P. K. Bocko, in Optical Materials, S. Musikant, ed. (Marcel Dekker, New York, 1990), Vol. 1, pp. 176–177.
  11. R. Eckhardt, R. Ulrich, Appl. Phys. Lett. 63, 284 (1993).
    [CrossRef]
  12. Y. Mohanna, J. Saugrain, J. Rousseau, P. Ledoux, J. Lightwave Technol. 8, 1799 (1990).
    [CrossRef]
  13. K. Shiraishi, Y. Aizawa, S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
    [CrossRef]

1996 (1)

1995 (1)

1994 (1)

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1335 (1994).
[CrossRef]

1993 (1)

R. Eckhardt, R. Ulrich, Appl. Phys. Lett. 63, 284 (1993).
[CrossRef]

1990 (2)

Y. Mohanna, J. Saugrain, J. Rousseau, P. Ledoux, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

K. Shiraishi, Y. Aizawa, S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
[CrossRef]

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

1986 (1)

1984 (1)

W. T. Anderson, J. Lightwave Technol. 2, 191 (1984).
[CrossRef]

1981 (1)

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

1971 (1)

Aizawa, Y.

K. Shiraishi, Y. Aizawa, S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
[CrossRef]

Anderson, W. T.

W. T. Anderson, J. Lightwave Technol. 2, 191 (1984).
[CrossRef]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef] [PubMed]

Bocko, P. K.

P. A. Tick, P. K. Bocko, in Optical Materials, S. Musikant, ed. (Marcel Dekker, New York, 1990), Vol. 1, pp. 176–177.

Brugger, K.

Eckhardt, R.

R. Eckhardt, R. Ulrich, Appl. Phys. Lett. 63, 284 (1993).
[CrossRef]

Edahiro, T.

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Engan, H. E.

Herrmann, H.

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1335 (1994).
[CrossRef]

Hosaka, T.

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Hwang, I. K.

Kawakami, S.

K. Shiraishi, Y. Aizawa, S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
[CrossRef]

Kim, B. Y.

Ledoux, P.

Y. Mohanna, J. Saugrain, J. Rousseau, P. Ledoux, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), pp. 383, 632–636.

Mohanna, Y.

Y. Mohanna, J. Saugrain, J. Rousseau, P. Ledoux, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Okamoto, K.

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Ostling, D.

Rousseau, J.

Y. Mohanna, J. Saugrain, J. Rousseau, P. Ledoux, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Saugrain, J.

Y. Mohanna, J. Saugrain, J. Rousseau, P. Ledoux, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

Schafer, K.

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1335 (1994).
[CrossRef]

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef] [PubMed]

Shiraishi, K.

K. Shiraishi, Y. Aizawa, S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), pp. 383, 632–636.

Sohler, W.

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1335 (1994).
[CrossRef]

Tick, P. A.

P. A. Tick, P. K. Bocko, in Optical Materials, S. Musikant, ed. (Marcel Dekker, New York, 1990), Vol. 1, pp. 176–177.

Ulrich, R.

R. Eckhardt, R. Ulrich, Appl. Phys. Lett. 63, 284 (1993).
[CrossRef]

Yun, S. H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Eckhardt, R. Ulrich, Appl. Phys. Lett. 63, 284 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1335 (1994).
[CrossRef]

J. Lightwave Technol. (4)

W. T. Anderson, J. Lightwave Technol. 2, 191 (1984).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

Y. Mohanna, J. Saugrain, J. Rousseau, P. Ledoux, J. Lightwave Technol. 8, 1799 (1990).
[CrossRef]

K. Shiraishi, Y. Aizawa, S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
[CrossRef]

Opt. Lett. (3)

Other (2)

P. A. Tick, P. K. Bocko, in Optical Materials, S. Musikant, ed. (Marcel Dekker, New York, 1990), Vol. 1, pp. 176–177.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), pp. 383, 632–636.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used to measure the coupling efficiency of the TMF acousto-optic device.

Fig. 2
Fig. 2

Measured normalized transmission as a function of the acoustic frequency. Polarization dependence is shown for the transverse acoustic displacement as being (a) parallel to the semimajor axis (x axis) or (b) parallel to the semiminor axis (y axis) of the core.

Fig. 3
Fig. 3

Schematic diagram of the modal propagation constants in the slightly elliptical-core TMF.

Fig. 4
Fig. 4

Coupling characteristics of the acousto-optic device made with a stress-relieved fiber.

Tables (2)

Tables Icon

Table 1 Experimental and Theoretical Values (in radians per centimeter) of the Propagation Constant Differences

Tables Icon

Table 2 Parameters Used in the Calculation

Metrics