Abstract

We show that the oxidation state of Fe in LiNbO3 has two competing effects on the diffraction efficiency of multiple holograms in 90°-geometry holographic storage. For crystals with moderate absorption, the saturation space-charge field is larger after high-temperature reduction treatment. However, reduction also increases absorption, which reduces the overall diffraction efficiency. We develop a theoretical model that predicts achievable diffraction efficiency as a function of oxidation state, doping level, photovoltaic field, crystal length, and region of beam overlap. We compare this model with experimental results for achievable diffraction efficiency and erasure-time constant.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, M. C. Tackitt, H. M. Stoll, Opt. Lett. 16, 605 (1991).
    [CrossRef] [PubMed]
  2. C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1 (1992).
  3. D. Psaltis, D. Brady, K. Wagner, Appl. Opt. 27, 1752 (1988).
    [CrossRef]
  4. F. Mok, G. Burr, D. Psaltis, Opt. Lett. 21, 896 (1996).
    [CrossRef] [PubMed]
  5. W. Phillips, D. L. Staebler, J. Electron. Mat. 3, 601 (1974).
    [CrossRef]
  6. H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
    [CrossRef]
  7. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  8. C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, J. Appl. Phys. 69, 1167 (1991).
    [CrossRef]
  9. E. Kratzig, Ferroelectrics 21, 635 (1978).
    [CrossRef]
  10. R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, E. Kratzig, Appl. Phys. B 51, 364 (1990).
    [CrossRef]
  11. D. L. Staebler, in Holographic Recording Materials, H. M. Smith, ed., Vol. 20 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 101–132.
    [CrossRef]
  12. A. Glass, D. Von der Linde, T. J. Negram, Appl. Phys. Lett. 25, 233 (1974).
    [CrossRef]

1996 (1)

1992 (1)

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1 (1992).

1991 (2)

F. H. Mok, M. C. Tackitt, H. M. Stoll, Opt. Lett. 16, 605 (1991).
[CrossRef] [PubMed]

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

1990 (1)

R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, E. Kratzig, Appl. Phys. B 51, 364 (1990).
[CrossRef]

1988 (1)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

1978 (1)

E. Kratzig, Ferroelectrics 21, 635 (1978).
[CrossRef]

1977 (1)

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

1974 (2)

W. Phillips, D. L. Staebler, J. Electron. Mat. 3, 601 (1974).
[CrossRef]

A. Glass, D. Von der Linde, T. J. Negram, Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

Brady, D.

Burr, G.

Dischler, B.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Engelmann, H.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Glass, A.

A. Glass, D. Von der Linde, T. J. Negram, Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

Gonser, U.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Gu, C.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1 (1992).

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

Hong, J.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1 (1992).

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

Keune, W.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Kratzig, E.

R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, E. Kratzig, Appl. Phys. B 51, 364 (1990).
[CrossRef]

E. Kratzig, Ferroelectrics 21, 635 (1978).
[CrossRef]

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Kurz, H.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Li, H.

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

McMichael, I.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1 (1992).

Mok, F.

F. Mok, G. Burr, D. Psaltis, Opt. Lett. 21, 896 (1996).
[CrossRef] [PubMed]

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1 (1992).

Mok, F. H.

Negram, T. J.

A. Glass, D. Von der Linde, T. J. Negram, Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Phillips, W.

W. Phillips, D. L. Staebler, J. Electron. Mat. 3, 601 (1974).
[CrossRef]

Psaltis, D.

Rauber, A.

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Ringhofer, K. H.

R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, E. Kratzig, Appl. Phys. B 51, 364 (1990).
[CrossRef]

Rupp, R. A.

R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, E. Kratzig, Appl. Phys. B 51, 364 (1990).
[CrossRef]

Saxena, R.

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1 (1992).

Sommerfeldt, R.

R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, E. Kratzig, Appl. Phys. B 51, 364 (1990).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Staebler, D. L.

W. Phillips, D. L. Staebler, J. Electron. Mat. 3, 601 (1974).
[CrossRef]

D. L. Staebler, in Holographic Recording Materials, H. M. Smith, ed., Vol. 20 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 101–132.
[CrossRef]

Stoll, H. M.

Tackitt, M. C.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Von der Linde, D.

A. Glass, D. Von der Linde, T. J. Negram, Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

Wagner, K.

Yeh, P.

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber, Appl. Phys. 12, 355 (1977).
[CrossRef]

Appl. Phys. B (1)

R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, E. Kratzig, Appl. Phys. B 51, 364 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

A. Glass, D. Von der Linde, T. J. Negram, Appl. Phys. Lett. 25, 233 (1974).
[CrossRef]

Ferroelectrics (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

E. Kratzig, Ferroelectrics 21, 635 (1978).
[CrossRef]

J. Appl. Phys. (1)

C. Gu, J. Hong, H. Li, D. Psaltis, P. Yeh, J. Appl. Phys. 69, 1167 (1991).
[CrossRef]

J. Electron. Mat. (1)

W. Phillips, D. L. Staebler, J. Electron. Mat. 3, 601 (1974).
[CrossRef]

J. Opt. Soc. Am. A (1)

C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1 (1992).

Opt. Lett. (2)

Other (1)

D. L. Staebler, in Holographic Recording Materials, H. M. Smith, ed., Vol. 20 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 101–132.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

90° geometry.

Fig. 2
Fig. 2

Dependence of M/# on crystal absorption: solid curve, approximate theory; dashed curve, exact theory.

Tables (1)

Tables Icon

Table 1 List of Parameters Useda

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

m ( x , z ) = { S 0 exp [ ( α / 2 ) z ] } { W 0 exp [ ( α / 2 ) x ] } I 0 ( x , z ) ,
E sc = E q { E 0 ph 2 + E D 2 [ ( N A / N D ) E 0 ph ] 2 + ( E D + E q ) 2 } 1 / 2 ,
τ l ( x , z ) = τ di ( x , z ) 1 + ( E D / E μ ) 1 + ( E D / E q ) = τ x I 0 ( x , z ) ,
ω l ( x , z ) = 1 τ di ( x , z ) N A E 0 ph N D E q 1 1 + ( E D / E μ ) ,
( A 0 τ r ) ext = b S 0 W 0 E q ( E 0 ph 2 + E D 2 ) 1 / 2 E q + E D exp ( α 2 L ) × ( z 2 z 1 ) τ x exp ( α x 1 ) exp ( α x 2 ) α ,
1 τ e ext | t = 0 d d t ( η | t = 0 ) η | t = 0 = 1 τ x { W 0 2 2 [ exp ( α x 1 ) + exp ( α x 2 ) ] + S 0 2 α exp ( α z 1 ) exp ( α z 2 ) z 2 z 1 } .
M / # = b S 0 W 0 E q ( E 0 ph 2 + E D 2 ) 1 / 2 E q + E D exp ( α 2 L ) ( z 2 z 1 ) [ exp ( α x 1 ) exp ( α x 2 ) ] ( α 2 ) [ exp ( α x 1 ) + exp ( α x 2 ) ] + ( S 0 W 0 ) 2 exp ( α z 1 ) exp ( α z 2 ) z 2 z 1 .

Metrics