Abstract

A quantitative analysis of the steady-state photorefractive index perturbations caused by a given optical irradiance distribution in a periodically poled ferroelectric is presented. Axially invariant index perturbations that are due to the photogalvanic effect are reduced compared with those in a homogeneously poled crystal by approximately the square of the product of the poling-grating wave vector (Kg) and a characteristic transverse dimension of the irradiance. This result is consistent with empirical observations in periodically poled LiNbO3 of much higher resistance to photorefractive damage.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Glass, Opt. Eng. 17, 470 (1978).
  2. D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991).
    [CrossRef]
  3. Y.-L. Lu, L. Mao, N.-B. Ming, Appl. Phys. Lett. 64, 3092 (1994).
    [CrossRef]
  4. V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 1957 (1995).
    [CrossRef]
  5. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. R. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  6. G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 56, 108 (1990).
    [CrossRef]
  7. P. Gunter, J.-P. Huignard, in Photorefractive Materials and Their Applications, P. Gunter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–70.
    [CrossRef]
  8. P. Günter, M. Zgonik, Opt. Lett. 16, 1826 (1991).
    [CrossRef] [PubMed]

1995 (2)

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 1957 (1995).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. R. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

1994 (1)

Y.-L. Lu, L. Mao, N.-B. Ming, Appl. Phys. Lett. 64, 3092 (1994).
[CrossRef]

1991 (2)

P. Günter, M. Zgonik, Opt. Lett. 16, 1826 (1991).
[CrossRef] [PubMed]

D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991).
[CrossRef]

1990 (1)

G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 56, 108 (1990).
[CrossRef]

1978 (1)

A. M. Glass, Opt. Eng. 17, 470 (1978).

Bosenberg, W. R.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. R. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991).
[CrossRef]

G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 56, 108 (1990).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. R. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991).
[CrossRef]

G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 56, 108 (1990).
[CrossRef]

Glass, A. M.

A. M. Glass, Opt. Eng. 17, 470 (1978).

Gunter, P.

P. Gunter, J.-P. Huignard, in Photorefractive Materials and Their Applications, P. Gunter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–70.
[CrossRef]

Günter, P.

Hanna, D. C.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 1957 (1995).
[CrossRef]

Huignard, J.-P.

P. Gunter, J.-P. Huignard, in Photorefractive Materials and Their Applications, P. Gunter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–70.
[CrossRef]

Jundt, D. H.

D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991).
[CrossRef]

Kazansky, P. G.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 1957 (1995).
[CrossRef]

Lu, Y.-L.

Y.-L. Lu, L. Mao, N.-B. Ming, Appl. Phys. Lett. 64, 3092 (1994).
[CrossRef]

Magel, G. A.

D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991).
[CrossRef]

G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 56, 108 (1990).
[CrossRef]

Mao, L.

Y.-L. Lu, L. Mao, N.-B. Ming, Appl. Phys. Lett. 64, 3092 (1994).
[CrossRef]

Ming, N.-B.

Y.-L. Lu, L. Mao, N.-B. Ming, Appl. Phys. Lett. 64, 3092 (1994).
[CrossRef]

Myers, L. E.

Pierce, J. R.

Pruneri, V.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 1957 (1995).
[CrossRef]

Russell, P. St. J.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 1957 (1995).
[CrossRef]

Webjörn, J.

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 1957 (1995).
[CrossRef]

Zgonik, M.

Appl. Phys. Lett. (4)

D. H. Jundt, G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 59, 2657 (1991).
[CrossRef]

Y.-L. Lu, L. Mao, N.-B. Ming, Appl. Phys. Lett. 64, 3092 (1994).
[CrossRef]

V. Pruneri, P. G. Kazansky, J. Webjörn, P. St. J. Russell, D. C. Hanna, Appl. Phys. Lett. 67, 1957 (1995).
[CrossRef]

G. A. Magel, M. M. Fejer, R. L. Byer, Appl. Phys. Lett. 56, 108 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

A. M. Glass, Opt. Eng. 17, 470 (1978).

Opt. Lett. (1)

Other (1)

P. Gunter, J.-P. Huignard, in Photorefractive Materials and Their Applications, P. Gunter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–70.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Homogeneously poled crystal, showing the space charge at the edges of the beam. (b) Periodically poled crystal, showing the space charge alternating with domain orientation and defining quantities used in analysis.

Fig. 2
Fig. 2

(a) Normalized irradiance Ī(ξ) of a Gaussian beam (solid curve) and a transverse photogalvanic electric field Ey (dashed curves, labeled with values of η = I0/Id) for a homogeneously poled crystal. Ey is normalized to Epν. (b) Transverse dependence of Ey and Ez for a periodically poled crystal. Dashed curves are for two values of η, as in (a). The circled group are Ez; other curves are Ey. Ey is normalized to 4amEpν/(Kmw)2. Ez is normalized to amEpν/(Kmw).

Fig. 3
Fig. 3

On-axis transverse electric field Ey(0)/amEpν versus Kmw for η = 10−3. On this scale the approximation Ey(0)/amEpν, = 1/[1 + (Kmw/2)2] is indistinguishable from the exact numerical result shown, as is the exact result for any η < 10−2.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

J = D n + μ n E T + p I ĉ ,
E = ( μ n ) 1 ( p I ĉ j ) ,
n = n ( I ) = s I + n d ,
E T ( ξ ) = ŷ E p ν I ¯ ( ξ ) I ¯ ( ξ ) + η + ŷ E w d I ¯ / d ξ I ¯ ( ξ ) + η ,
p ( z ) / p b = a 0 + m = 1 a m cos ( K m z + ν m ) ,
ϕ m = Φ m ( x , y ) cos ( K m z + ν m ) ,
t · ( μ n t Φ m ) μ n K m 2 Φ m = a m p b ĉ · t I ,
d d ξ ( n ¯ d Φ ¯ d ξ ) ( K m w ) 2 n ¯ Φ ¯ = a m d I ¯ d ξ ,
Φ ¯ m a m ( K m w ) 2 1 n ¯ d I ¯ d ξ .
E y , m ( y ) = d Φ m d y E p ν a m ( K m w ) 2 d d ξ ( 1 n ¯ d I ¯ d ξ ) ,
E z , m ( y ) = K m Φ m E p ν a m K m w 1 n ¯ d I ¯ d ξ .
Δ n e = ( n e 3 r 33 eff / 2 ) E y .
Δ n e , 0 Δ n e , h 8 π 2 1 ( K g w ) 2 d d ξ ( 1 n ¯ d I ¯ d ξ ) ,

Metrics