Abstract

Optical dephasing measurements are reported for Tm3+:Y2Si2O7 as a function of temperature and laser excitation intensity. By use of photon echoes, a coherence time of T2 = 23 μs was measured at 1.24 K for the 3H6(1) → 3H4(1) transition at 790.427 nm, corresponding to a homogeneous linewidth of 14 kHz. The relatively broad inhomogeneous linewidth of 100 GHz gives an inhomogeneous-to-homogeneous linewidth ratio of Γinhh = 7 × 106. This large ratio, a transition wavelength suitable for GaAlAs semiconductor lasers, and the absence of hyperfine structure hole burning make this material a good candidate for time-domain signal processing and transient optically addressed data storage.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerher, ed., Persistent Spectral Hole-Burning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988).
  2. T. W. MossbergOpt. Lett. 7, 77 (1982).
    [CrossRef] [PubMed]
  3. W. R. Babbitt, T. W. MossbergOpt. Commun. 65, 185 (1988).
    [CrossRef]
  4. M. Mitsunaga, R. Yano, N. UesugiOpt. Lett. 16, 1890 (1991).
    [CrossRef] [PubMed]
  5. T. W. MossbergOpt. Lett. 17, 535 (1992).
    [CrossRef] [PubMed]
  6. R. Yano, M. Mitsunaga, N. UesugiJ. Opt. Soc. Am. B 9, 992 (1992).
    [CrossRef]
  7. Y. S. Bai, R. KachruOpt. Lett. 18, 1189 (1993); X. A. Shen, R. KachruOpt. Lett. 18, 1967 (1993); X. A. Shen, E. Chiang, R. KachruOpt. Lett. 19, 1246 (1994).
    [CrossRef] [PubMed]
  8. W. R. Babbitt, T. W. MossbergJ. Opt. Soc. Am. B 11, 1948 (1994).
    [CrossRef]
  9. W. R. Babbitt, T. W. MossbergOpt. Lett. 20, 910 (1995).
    [CrossRef] [PubMed]
  10. W. R. Babbitt, J. A. BellAppl. Opt. 33, 1538 (1994).
    [CrossRef] [PubMed]
  11. H. Lin, T. Wang, G. A. Wilson, T. W. MossbergOpt. Lett. 20, 91 (1995); H. Lin, T. Wang, T. W. MossbergOpt. Lett. 20, 1658 (1995).
    [CrossRef] [PubMed]
  12. The swept carrier method of Refs. 5 and 11 can overcome this limitation, but the ratio Γinh/Γh remains a figure of merit of materials for these applications.
  13. R. M. MacfarlaneOpt. Lett. 18, 1958 (1993).
    [CrossRef] [PubMed]
  14. R. M. Macfarlane, R. M. Shelbyin Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii, R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), pp. 55–184.
  15. R. Yano, M. Mitsunaga, N. UesugiOpt. Lett. 16, 1884 (1991).
    [CrossRef] [PubMed]
  16. R. W. Equall, Y. Sun, R. L. Cone, R. M. MacfarlanePhys. Rev. Lett. 72, 2179 (1994); R. W. Equall, R. L. Cone, R. M. MacfarlanePhys. Rev. B 52, 3963 (1995).
    [CrossRef] [PubMed]
  17. R. W. Equall, G. M. Wang, R. L. Cone, R. M. Macfarlane, R. L. Hutcheson“Homogeneous broadening of optical transitions in Tm3+:Y2SiO5,”Phys. Rev. B (to be published).
  18. G. K. Liu, M. F. Joubert, R. L. Cone, B. JacquierJ. Lumin. 38, 34 (1987); G. K. Liu, R. L. ConePhys. Rev. B 41, 6193 (1990).
    [CrossRef]
  19. J. Huang, J. Zhang, A. Lezama, T. W. MossbergPhys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. MossbergOpt. Commun. 75, 29 (1990).
    [CrossRef] [PubMed]
  20. M. Mitsunaga, T. Takagahara, R. Yano, N. UesugiPhys. Rev. Lett. 68, 3216 (1992).
    [CrossRef] [PubMed]
  21. A. Maqsood, B. M. Wanklyn, G. GartonJ. Cryst. Growth 46, 671 (1979).
    [CrossRef]
  22. J. FelscheJ. Less Common Metals 21, 1 (1970).
  23. R. OrbachProc. R. Soc. London Ser. A 264, 458 (1961); D. E. McCumber, M. D. SturgeJ. Appl. Phys. 34, 1682 (1963).
    [CrossRef]

1995 (2)

1994 (3)

R. W. Equall, Y. Sun, R. L. Cone, R. M. MacfarlanePhys. Rev. Lett. 72, 2179 (1994); R. W. Equall, R. L. Cone, R. M. MacfarlanePhys. Rev. B 52, 3963 (1995).
[CrossRef] [PubMed]

W. R. Babbitt, J. A. BellAppl. Opt. 33, 1538 (1994).
[CrossRef] [PubMed]

W. R. Babbitt, T. W. MossbergJ. Opt. Soc. Am. B 11, 1948 (1994).
[CrossRef]

1993 (2)

1992 (3)

1991 (2)

1989 (1)

J. Huang, J. Zhang, A. Lezama, T. W. MossbergPhys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. MossbergOpt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

1988 (1)

W. R. Babbitt, T. W. MossbergOpt. Commun. 65, 185 (1988).
[CrossRef]

1987 (1)

G. K. Liu, M. F. Joubert, R. L. Cone, B. JacquierJ. Lumin. 38, 34 (1987); G. K. Liu, R. L. ConePhys. Rev. B 41, 6193 (1990).
[CrossRef]

1982 (1)

1979 (1)

A. Maqsood, B. M. Wanklyn, G. GartonJ. Cryst. Growth 46, 671 (1979).
[CrossRef]

1970 (1)

J. FelscheJ. Less Common Metals 21, 1 (1970).

1961 (1)

R. OrbachProc. R. Soc. London Ser. A 264, 458 (1961); D. E. McCumber, M. D. SturgeJ. Appl. Phys. 34, 1682 (1963).
[CrossRef]

Babbitt, W. R.

Bai, Y. S.

Bell, J. A.

Cone, R. L.

R. W. Equall, Y. Sun, R. L. Cone, R. M. MacfarlanePhys. Rev. Lett. 72, 2179 (1994); R. W. Equall, R. L. Cone, R. M. MacfarlanePhys. Rev. B 52, 3963 (1995).
[CrossRef] [PubMed]

G. K. Liu, M. F. Joubert, R. L. Cone, B. JacquierJ. Lumin. 38, 34 (1987); G. K. Liu, R. L. ConePhys. Rev. B 41, 6193 (1990).
[CrossRef]

R. W. Equall, G. M. Wang, R. L. Cone, R. M. Macfarlane, R. L. Hutcheson“Homogeneous broadening of optical transitions in Tm3+:Y2SiO5,”Phys. Rev. B (to be published).

Equall, R. W.

R. W. Equall, Y. Sun, R. L. Cone, R. M. MacfarlanePhys. Rev. Lett. 72, 2179 (1994); R. W. Equall, R. L. Cone, R. M. MacfarlanePhys. Rev. B 52, 3963 (1995).
[CrossRef] [PubMed]

R. W. Equall, G. M. Wang, R. L. Cone, R. M. Macfarlane, R. L. Hutcheson“Homogeneous broadening of optical transitions in Tm3+:Y2SiO5,”Phys. Rev. B (to be published).

Felsche, J.

J. FelscheJ. Less Common Metals 21, 1 (1970).

Garton, G.

A. Maqsood, B. M. Wanklyn, G. GartonJ. Cryst. Growth 46, 671 (1979).
[CrossRef]

Huang, J.

J. Huang, J. Zhang, A. Lezama, T. W. MossbergPhys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. MossbergOpt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

Hutcheson, R. L.

R. W. Equall, G. M. Wang, R. L. Cone, R. M. Macfarlane, R. L. Hutcheson“Homogeneous broadening of optical transitions in Tm3+:Y2SiO5,”Phys. Rev. B (to be published).

Jacquier, B.

G. K. Liu, M. F. Joubert, R. L. Cone, B. JacquierJ. Lumin. 38, 34 (1987); G. K. Liu, R. L. ConePhys. Rev. B 41, 6193 (1990).
[CrossRef]

Joubert, M. F.

G. K. Liu, M. F. Joubert, R. L. Cone, B. JacquierJ. Lumin. 38, 34 (1987); G. K. Liu, R. L. ConePhys. Rev. B 41, 6193 (1990).
[CrossRef]

Kachru, R.

Lezama, A.

J. Huang, J. Zhang, A. Lezama, T. W. MossbergPhys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. MossbergOpt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

Lin, H.

Liu, G. K.

G. K. Liu, M. F. Joubert, R. L. Cone, B. JacquierJ. Lumin. 38, 34 (1987); G. K. Liu, R. L. ConePhys. Rev. B 41, 6193 (1990).
[CrossRef]

Macfarlane, R. M.

R. W. Equall, Y. Sun, R. L. Cone, R. M. MacfarlanePhys. Rev. Lett. 72, 2179 (1994); R. W. Equall, R. L. Cone, R. M. MacfarlanePhys. Rev. B 52, 3963 (1995).
[CrossRef] [PubMed]

R. M. MacfarlaneOpt. Lett. 18, 1958 (1993).
[CrossRef] [PubMed]

R. M. Macfarlane, R. M. Shelbyin Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii, R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), pp. 55–184.

R. W. Equall, G. M. Wang, R. L. Cone, R. M. Macfarlane, R. L. Hutcheson“Homogeneous broadening of optical transitions in Tm3+:Y2SiO5,”Phys. Rev. B (to be published).

Maqsood, A.

A. Maqsood, B. M. Wanklyn, G. GartonJ. Cryst. Growth 46, 671 (1979).
[CrossRef]

Mitsunaga, M.

Mossberg, T. W.

Orbach, R.

R. OrbachProc. R. Soc. London Ser. A 264, 458 (1961); D. E. McCumber, M. D. SturgeJ. Appl. Phys. 34, 1682 (1963).
[CrossRef]

Shelby, R. M.

R. M. Macfarlane, R. M. Shelbyin Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii, R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), pp. 55–184.

Sun, Y.

R. W. Equall, Y. Sun, R. L. Cone, R. M. MacfarlanePhys. Rev. Lett. 72, 2179 (1994); R. W. Equall, R. L. Cone, R. M. MacfarlanePhys. Rev. B 52, 3963 (1995).
[CrossRef] [PubMed]

Takagahara, T.

M. Mitsunaga, T. Takagahara, R. Yano, N. UesugiPhys. Rev. Lett. 68, 3216 (1992).
[CrossRef] [PubMed]

Uesugi, N.

Wang, G. M.

R. W. Equall, G. M. Wang, R. L. Cone, R. M. Macfarlane, R. L. Hutcheson“Homogeneous broadening of optical transitions in Tm3+:Y2SiO5,”Phys. Rev. B (to be published).

Wang, T.

Wanklyn, B. M.

A. Maqsood, B. M. Wanklyn, G. GartonJ. Cryst. Growth 46, 671 (1979).
[CrossRef]

Wilson, G. A.

Yano, R.

Zhang, J.

J. Huang, J. Zhang, A. Lezama, T. W. MossbergPhys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. MossbergOpt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Cryst. Growth (1)

A. Maqsood, B. M. Wanklyn, G. GartonJ. Cryst. Growth 46, 671 (1979).
[CrossRef]

J. Less Common Metals (1)

J. FelscheJ. Less Common Metals 21, 1 (1970).

J. Lumin. (1)

G. K. Liu, M. F. Joubert, R. L. Cone, B. JacquierJ. Lumin. 38, 34 (1987); G. K. Liu, R. L. ConePhys. Rev. B 41, 6193 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

W. R. Babbitt, T. W. MossbergOpt. Commun. 65, 185 (1988).
[CrossRef]

Opt. Lett. (8)

Phys. Rev. Lett. (3)

R. W. Equall, Y. Sun, R. L. Cone, R. M. MacfarlanePhys. Rev. Lett. 72, 2179 (1994); R. W. Equall, R. L. Cone, R. M. MacfarlanePhys. Rev. B 52, 3963 (1995).
[CrossRef] [PubMed]

J. Huang, J. Zhang, A. Lezama, T. W. MossbergPhys. Rev. Lett. 63, 78 (1989); J. Huang, J. Zhang, T. W. MossbergOpt. Commun. 75, 29 (1990).
[CrossRef] [PubMed]

M. Mitsunaga, T. Takagahara, R. Yano, N. UesugiPhys. Rev. Lett. 68, 3216 (1992).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A (1)

R. OrbachProc. R. Soc. London Ser. A 264, 458 (1961); D. E. McCumber, M. D. SturgeJ. Appl. Phys. 34, 1682 (1963).
[CrossRef]

Other (4)

R. W. Equall, G. M. Wang, R. L. Cone, R. M. Macfarlane, R. L. Hutcheson“Homogeneous broadening of optical transitions in Tm3+:Y2SiO5,”Phys. Rev. B (to be published).

R. M. Macfarlane, R. M. Shelbyin Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii, R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), pp. 55–184.

The swept carrier method of Refs. 5 and 11 can overcome this limitation, but the ratio Γinh/Γh remains a figure of merit of materials for these applications.

W. E. Moerher, ed., Persistent Spectral Hole-Burning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Photon echo decays for the 3H6(1) → 3H4(1) transition of Tm3+:Y2Si2O7 recorded at temperatures of 1.24 and 2.17 K with an excitation power density of 9.6 W/cm2 and excitation pulse widths of 0.5 μs.

Fig. 2
Fig. 2

Dependence of homogeneous linewidth on excitation power density recorded at a temperature of 1.45 K showing the contribution from instantaneous spectral diffusion. Both echo excitation pulses had the same intensity, and their intensities were varied simultaneously. The solid curve is a fit to a simple rate-equation model.

Fig. 3
Fig. 3

Temperature dependence of homogeneous line-width of the 3H6(1) → 3H4(1) transition of 0.1% Tm3+ in Y2Si2O7. The solid curve is a fit to Eq. (2) representing the direct phonon process. All measurements were obtained with an excitation power density of 9.6 W/cm2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ h = Γ pop + Γ Tm Tm + Γ Tm host + Γ phonon .
1 / T 2 = ( 1 / T 1 ) exp ( Δ / k T ) ,

Metrics