Abstract

We present a new optoelectronic architecture, based on parallel canceled delay lines, that performs programmable filtering of microwave signals. The new architecture can process optically carried microwave signals over frequency bandwidths as large as 20 GHz, with a time–frequency product up to 103. The operating principle of this structure is detailed, followed by the preliminary experimental demonstration at 1.2 GHz of a 40-dB rejection filter.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zmuda, E. N. ToughlianPhotonic Aspects of Modern Radar (Artech, Boston, Mass., 1994).
  2. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
    [CrossRef]
  3. J. N. Lee“Optical architectures for temporal signal processing,” D. R. Pape, “Acousto-optic signal processors,” and K. P. Jackson and H. J. Shaw, “Fiber optic delay line signal processors” inOptical Signal Processing, J. L. Horner, ed. (Academic, San Diego, Calif., 1987).
  4. S. Gweon, C. E. Lee, H. F. TaylorIEEE Photon. Technol. Lett. 2, 382 (1990).
    [CrossRef]
  5. D. Norton, S. Johns, C. Keefer, R. SorefIEEE Photon. Technol. Lett. 6, 831 (1994).
    [CrossRef]
  6. M. Y. Frankel, R. D. EsmanIEEE Photon. Technol. Lett. 7, 191 (1995).
    [CrossRef]
  7. R. M. Montgomery, M. R. LangeAppl. Opt. 30, 2844 (1991).
    [CrossRef] [PubMed]
  8. P. M. Grant, R. S. WithersIEEE Trans. Aerospace Electron. Syst. 26, 818 (1990).
    [CrossRef]
  9. C. Joubert, A. Delboulbé, B. Loiseaux, J. P. HuignardProc. SPIE 2406, 248 (1995).
  10. U. Elfron, G. Livescuin Spatial Light Modulators, U. Efron, ed. (DekkerNew York, 1995), p. 217.

1995 (2)

M. Y. Frankel, R. D. EsmanIEEE Photon. Technol. Lett. 7, 191 (1995).
[CrossRef]

C. Joubert, A. Delboulbé, B. Loiseaux, J. P. HuignardProc. SPIE 2406, 248 (1995).

1994 (1)

D. Norton, S. Johns, C. Keefer, R. SorefIEEE Photon. Technol. Lett. 6, 831 (1994).
[CrossRef]

1991 (1)

1990 (2)

P. M. Grant, R. S. WithersIEEE Trans. Aerospace Electron. Syst. 26, 818 (1990).
[CrossRef]

S. Gweon, C. E. Lee, H. F. TaylorIEEE Photon. Technol. Lett. 2, 382 (1990).
[CrossRef]

1985 (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Chapin Cutler, C.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Delboulbé, A.

C. Joubert, A. Delboulbé, B. Loiseaux, J. P. HuignardProc. SPIE 2406, 248 (1995).

Elfron, U.

U. Elfron, G. Livescuin Spatial Light Modulators, U. Efron, ed. (DekkerNew York, 1995), p. 217.

Esman, R. D.

M. Y. Frankel, R. D. EsmanIEEE Photon. Technol. Lett. 7, 191 (1995).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, R. D. EsmanIEEE Photon. Technol. Lett. 7, 191 (1995).
[CrossRef]

Goodman, J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Grant, P. M.

P. M. Grant, R. S. WithersIEEE Trans. Aerospace Electron. Syst. 26, 818 (1990).
[CrossRef]

Gweon, S.

S. Gweon, C. E. Lee, H. F. TaylorIEEE Photon. Technol. Lett. 2, 382 (1990).
[CrossRef]

Huignard, J. P.

C. Joubert, A. Delboulbé, B. Loiseaux, J. P. HuignardProc. SPIE 2406, 248 (1995).

Jackson, K. P.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Johns, S.

D. Norton, S. Johns, C. Keefer, R. SorefIEEE Photon. Technol. Lett. 6, 831 (1994).
[CrossRef]

Joubert, C.

C. Joubert, A. Delboulbé, B. Loiseaux, J. P. HuignardProc. SPIE 2406, 248 (1995).

Keefer, C.

D. Norton, S. Johns, C. Keefer, R. SorefIEEE Photon. Technol. Lett. 6, 831 (1994).
[CrossRef]

Lange, M. R.

Lee, C. E.

S. Gweon, C. E. Lee, H. F. TaylorIEEE Photon. Technol. Lett. 2, 382 (1990).
[CrossRef]

Lee, J. N.

J. N. Lee“Optical architectures for temporal signal processing,” D. R. Pape, “Acousto-optic signal processors,” and K. P. Jackson and H. J. Shaw, “Fiber optic delay line signal processors” inOptical Signal Processing, J. L. Horner, ed. (Academic, San Diego, Calif., 1987).

Livescu, G.

U. Elfron, G. Livescuin Spatial Light Modulators, U. Efron, ed. (DekkerNew York, 1995), p. 217.

Loiseaux, B.

C. Joubert, A. Delboulbé, B. Loiseaux, J. P. HuignardProc. SPIE 2406, 248 (1995).

Montgomery, R. M.

Moslehi, B.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Newton, S. A.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Norton, D.

D. Norton, S. Johns, C. Keefer, R. SorefIEEE Photon. Technol. Lett. 6, 831 (1994).
[CrossRef]

Shaw, H. J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Soref, R.

D. Norton, S. Johns, C. Keefer, R. SorefIEEE Photon. Technol. Lett. 6, 831 (1994).
[CrossRef]

Taylor, H. F.

S. Gweon, C. E. Lee, H. F. TaylorIEEE Photon. Technol. Lett. 2, 382 (1990).
[CrossRef]

Toughlian, E. N.

H. Zmuda, E. N. ToughlianPhotonic Aspects of Modern Radar (Artech, Boston, Mass., 1994).

Tur, M.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Withers, R. S.

P. M. Grant, R. S. WithersIEEE Trans. Aerospace Electron. Syst. 26, 818 (1990).
[CrossRef]

Zmuda, H.

H. Zmuda, E. N. ToughlianPhotonic Aspects of Modern Radar (Artech, Boston, Mass., 1994).

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (3)

S. Gweon, C. E. Lee, H. F. TaylorIEEE Photon. Technol. Lett. 2, 382 (1990).
[CrossRef]

D. Norton, S. Johns, C. Keefer, R. SorefIEEE Photon. Technol. Lett. 6, 831 (1994).
[CrossRef]

M. Y. Frankel, R. D. EsmanIEEE Photon. Technol. Lett. 7, 191 (1995).
[CrossRef]

IEEE Trans. Aerospace Electron. Syst. (1)

P. M. Grant, R. S. WithersIEEE Trans. Aerospace Electron. Syst. 26, 818 (1990).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. Chapin Cutler, J. Goodman, H. J. ShawIEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Proc. SPIE (1)

C. Joubert, A. Delboulbé, B. Loiseaux, J. P. HuignardProc. SPIE 2406, 248 (1995).

Other (3)

U. Elfron, G. Livescuin Spatial Light Modulators, U. Efron, ed. (DekkerNew York, 1995), p. 217.

J. N. Lee“Optical architectures for temporal signal processing,” D. R. Pape, “Acousto-optic signal processors,” and K. P. Jackson and H. J. Shaw, “Fiber optic delay line signal processors” inOptical Signal Processing, J. L. Horner, ed. (Academic, San Diego, Calif., 1987).

H. Zmuda, E. N. ToughlianPhotonic Aspects of Modern Radar (Artech, Boston, Mass., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Operating principle of the programmable filter: L, length of the DM; θ, angle of incidence of the plane wave.

Fig. 2
Fig. 2

Implementation of the adaptive filter: L = 58 mm, DM = 1800 lines/mm, F = 120 mm.

Fig. 3
Fig. 3

Time delay experienced by the optical carrier: whatever the frequency used in the range 0.6–1.3 GHz, the delay experienced by the signal S(t) across the aperture varies linearly with the position of the moving slit from one edge (0) of DM to the other one (20 mm). The maximum value is ≈0.5 ns.

Fig. 4
Fig. 4

Rejection filter response obtained with a two-slit figure displayed on the SLM: the relative amplitude is given by the ratio ys(f, t)/y1(f, t). The signal y1(f, t) corresponds to the beam transmitted by only one of the two slits.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

y ( t 0 ) = t 0 T t 0 x ( t ) S ( t t 0 ) d t .
k = 0 n x ( t k ) S [ t k ( t 0 T ) ] .
i ( t ) = Γ s k = 0 N | E k | 2 d S = Γ S | E 0 | 2 k = 0 N | α k | 2 × | 1 + j exp [ j m x ( t k Δ t ) ] | 2 .
i ( t ) 2 Γ S | E 0 | 2 k = 0 N | α k | 2 2 m Γ S | E 0 | 2 × k = 0 N | α k | 2 x ( t k Δ t ) .
i ( t ) = Γ S | k = 0 N E k | 2 d S ,
i ( t ) = 2 Γ S | E 0 | 2 k = 0 N | α k | 2 + 4 Γ S | E 0 | 2 k = 0 N k k α k α k × cos ϕ k k 2 m Γ S | E 0 | 2 k = 0 N β k x ( t k Δ t ) ,
β k = | α k | 2 + k k α k α k ( cos ϕ k k + sin ϕ k k ) .

Metrics