Abstract

A mode-locked fiber laser gyroscope is reported that uses a distributed-feedback semiconductor laser amplifier as the gain medium. Stable mode-locked optical pulses were obtained without gain competition, and the pulse interval could be measured with much-improved accuracy as a function of rotation rate. The rms noise equivalent rotation rate was measured to be 0.4deg/h.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ezekiel, H. J. Arditty, in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 2.
  2. B. Y. Kim, in Optical Fiber Rotation Sensing, W. K. Burns, ed. (Academic, San Diego, Calif., 1994), Chap. 3, p. 81.
  3. F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. I, p. 133.
  4. M. Y. Jeon, H. J. Jeong, B. Y. Kim, Opt. Lett. 18, 32 (1993).
  5. D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
    [CrossRef]
  6. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminell, F. Hakim, Opt. Lett. 14, 671 (1989).
    [CrossRef] [PubMed]
  7. S. Tarucha, K. Otsuka, IEEE J. Quantum Electron. QE-17, 810 (1981).
    [CrossRef]
  8. M. Gustavsson, A. Karlson, L. Thylen, J. Lightwave Technol. 8, 610 (1990).
    [CrossRef]
  9. J. A. Yeung, IEEE J. Quantum Electron. QE-17, 398 (1981).
    [CrossRef]

1993

M. Y. Jeon, H. J. Jeong, B. Y. Kim, Opt. Lett. 18, 32 (1993).

1990

M. Gustavsson, A. Karlson, L. Thylen, J. Lightwave Technol. 8, 610 (1990).
[CrossRef]

1989

1988

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

1981

S. Tarucha, K. Otsuka, IEEE J. Quantum Electron. QE-17, 810 (1981).
[CrossRef]

J. A. Yeung, IEEE J. Quantum Electron. QE-17, 398 (1981).
[CrossRef]

Arditty, H. J.

S. Ezekiel, H. J. Arditty, in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 2.

Aronowitz, F.

F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. I, p. 133.

Ezekiel, S.

S. Ezekiel, H. J. Arditty, in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 2.

Gustavsson, M.

M. Gustavsson, A. Karlson, L. Thylen, J. Lightwave Technol. 8, 610 (1990).
[CrossRef]

Hakim, F.

Jeon, M. Y.

M. Y. Jeon, H. J. Jeong, B. Y. Kim, Opt. Lett. 18, 32 (1993).

Jeong, H. J.

M. Y. Jeon, H. J. Jeong, B. Y. Kim, Opt. Lett. 18, 32 (1993).

Karlson, A.

M. Gustavsson, A. Karlson, L. Thylen, J. Lightwave Technol. 8, 610 (1990).
[CrossRef]

Kim, B. Y.

M. Y. Jeon, H. J. Jeong, B. Y. Kim, Opt. Lett. 18, 32 (1993).

B. Y. Kim, in Optical Fiber Rotation Sensing, W. K. Burns, ed. (Academic, San Diego, Calif., 1994), Chap. 3, p. 81.

Mortimore, D. B.

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Otsuka, K.

S. Tarucha, K. Otsuka, IEEE J. Quantum Electron. QE-17, 810 (1981).
[CrossRef]

Po, H.

Snitzer, E.

Tarucha, S.

S. Tarucha, K. Otsuka, IEEE J. Quantum Electron. QE-17, 810 (1981).
[CrossRef]

Thylen, L.

M. Gustavsson, A. Karlson, L. Thylen, J. Lightwave Technol. 8, 610 (1990).
[CrossRef]

Tumminell, R.

Yeung, J. A.

J. A. Yeung, IEEE J. Quantum Electron. QE-17, 398 (1981).
[CrossRef]

Zenteno, L. A.

IEEE J. Quantum Electron

S. Tarucha, K. Otsuka, IEEE J. Quantum Electron. QE-17, 810 (1981).
[CrossRef]

J. A. Yeung, IEEE J. Quantum Electron. QE-17, 398 (1981).
[CrossRef]

J. Lightwave Technol.

M. Gustavsson, A. Karlson, L. Thylen, J. Lightwave Technol. 8, 610 (1990).
[CrossRef]

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Opt. Lett.

Other

S. Ezekiel, H. J. Arditty, in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 2.

B. Y. Kim, in Optical Fiber Rotation Sensing, W. K. Burns, ed. (Academic, San Diego, Calif., 1994), Chap. 3, p. 81.

F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. I, p. 133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of a MLFLG using a DFB SLA as the gain medium. GRIN, gradiant-index; PC, polarization controller; DC’s, directional couplers; PM, phase modulator; Pol, polarizer; PMF, polarization-maintaining fiber; D, detector; OSC, oscilloscope; TIA, time-interval analyzer; RF SA, rf spectrum analyzer; FG, function generator; Amp., amplifier.

Fig. 2
Fig. 2

Signal output from the MLFLG, showing the applied electrical signal to the phase modulator (upper traces) and the mode-locked optical pulse signal (lower traces) for (a) no rotation-rate input, (b) the rf spectrum for the signal in (a), and (c) a rotation-rate input of 55 deg/s. The vertical scales for the lower traces of (a) and (c) are 20 mV/division.

Fig. 3
Fig. 3

Response of the timing shift of the mode-locked pulses as a function of the rotation rate measured by a time-interval analyzer.

Fig. 4
Fig. 4

Mean time deviation of the time interval between each set of mode-locked pulses from the half-period of applied modulation signal without rotation-rate input. The phase modulation amplitude ϕm = 3.1 rad.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t = T 2 π sin 1 ( ϕ R ϕ m ) ,

Metrics