Abstract

A 16-beam grating-based division-of-amplitude photopolarimeter that employs a transmission grating and a linear photodiode detector array has been developed and tested. The transmission grating splits the incident light beam into 16 orders with essentially uniform intensity distribution. Linear polarizers are placed in fanned-out azimuth orientations in different orders, and a quarter-wave retarder is inserted in one order. After calibration, the photopolarimeter makes time-resolved measurements of all the Stokes parameters of the incident light with a precision of 0.001. The calibration and testing of the system at 632.8 nm are presented.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam, Appl. Opt. 31, 3574 (1992).
    [CrossRef] [PubMed]
  2. R. M. A. Azzam, K. A. Giardina, in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 92;J. Opt. Soc. Am. A 10, 1190 (1993).
  3. T. Todorov, L. Nikolova, Opt. Lett. 17, 358 (1992).
    [CrossRef] [PubMed]
  4. Lasiris, Inc., St.-Laurent, Québec, Canada.
  5. Princeton Instruments Inc., Trenton, New Jersey.
  6. Polaroid Corporation, Norwood, Massachusetts.
  7. Newport Corporation Irvine, California.
  8. R. M. A. Azzam, J. Opt. Soc. Am. A 7, 87 (1990).
    [CrossRef]
  9. R. M. A. Azzam, A. G. Lopez, J. Opt. Soc. Am. A 6, 1513 (1989).
    [CrossRef]
  10. R. M. A. Azzam, E. Masetti, I. M. Elminyawi, F. G. Grosz, Rev. Sci. Instrum. 59, 84(1988).
    [CrossRef]
  11. See, e.g.,P. S. Hauge, Surf. Sci. 96, 108 (1980).
    [CrossRef]

1992

1990

1989

1988

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, F. G. Grosz, Rev. Sci. Instrum. 59, 84(1988).
[CrossRef]

1980

See, e.g.,P. S. Hauge, Surf. Sci. 96, 108 (1980).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, Appl. Opt. 31, 3574 (1992).
[CrossRef] [PubMed]

R. M. A. Azzam, J. Opt. Soc. Am. A 7, 87 (1990).
[CrossRef]

R. M. A. Azzam, A. G. Lopez, J. Opt. Soc. Am. A 6, 1513 (1989).
[CrossRef]

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, F. G. Grosz, Rev. Sci. Instrum. 59, 84(1988).
[CrossRef]

R. M. A. Azzam, K. A. Giardina, in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 92;J. Opt. Soc. Am. A 10, 1190 (1993).

Elminyawi, I. M.

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, F. G. Grosz, Rev. Sci. Instrum. 59, 84(1988).
[CrossRef]

Giardina, K. A.

R. M. A. Azzam, K. A. Giardina, in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 92;J. Opt. Soc. Am. A 10, 1190 (1993).

Grosz, F. G.

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, F. G. Grosz, Rev. Sci. Instrum. 59, 84(1988).
[CrossRef]

Hauge, P. S.

See, e.g.,P. S. Hauge, Surf. Sci. 96, 108 (1980).
[CrossRef]

Lopez, A. G.

Masetti, E.

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, F. G. Grosz, Rev. Sci. Instrum. 59, 84(1988).
[CrossRef]

Nikolova, L.

Todorov, T.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Lett.

Rev. Sci. Instrum.

R. M. A. Azzam, E. Masetti, I. M. Elminyawi, F. G. Grosz, Rev. Sci. Instrum. 59, 84(1988).
[CrossRef]

Surf. Sci.

See, e.g.,P. S. Hauge, Surf. Sci. 96, 108 (1980).
[CrossRef]

Other

Lasiris, Inc., St.-Laurent, Québec, Canada.

Princeton Instruments Inc., Trenton, New Jersey.

Polaroid Corporation, Norwood, Massachusetts.

Newport Corporation Irvine, California.

R. M. A. Azzam, K. A. Giardina, in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 92;J. Opt. Soc. Am. A 10, 1190 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the 16-beam G-DOAP.

Fig. 2
Fig. 2

Deviations of the measured (circles) and expected (solid curves) normalized Stokes parameters: (a) Δs1, (b) Δs2, (c) Δs3.

Fig. 3
Fig. 3

Rms errors of the normalized Stokes parameters versus the number of beams used in the G-DOAP.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i m = a m 0 S 0 + a m 1 S 1 + a m 2 S 2 + a m 3 S 3 , m = 1 , 2 , , 16 ,
I = AS ,
S = [ A t A ] 1 A t I = CI .
A t = [ 265.17 189.36 45.48 166.95 266.18 58.56 269.96 101.74 256.35 57.38 272.45 169.51 48.34 184.75 309.42 246.54 24.43 126.40 23.71 3.47 34.55 25.99 170.17 90.10 240.06 44.75 119.96 47.22 15.20 85.11 241.13 235.72 22.28 133.81 36.02 163.53 254.65 50.57 203.74 26.86 85.86 33.58 239.67 159.39 43.81 157.78 174.90 62.07 256.44 18.11 4.92 24.43 41.18 7.85 36.39 6.96 6.18 2.55 31.37 21.59 6.41 21.54 32.37 16.50 ]
C = 10 4 × [ 0.12 3.01 0.79 2.67 4.24 0.96 4.43 1.73 4.58 1.01 4.97 3.09 0.86 2.94 5.41 4.22 1.11 5.13 0.82 0.35 1.02 0.96 6.51 3.59 9.91 1.89 5.51 2.36 0.46 3.56 8.88 8.97 5.80 4.87 1.04 5.51 8.44 1.65 6.48 0.77 2.97 1.13 7.60 4.99 1.30 5.55 4.52 0.99 38.50 3.03 0.83 2.41 3.41 0.86 3.42 1.39 4.20 0.81 5.21 3.32 0.97 2.96 6.83 5.47 ]

Metrics