Abstract

Planar gratings and holograms are normally readout-wavelength insensitive. We show, however, that a binary phase surface-relief hologram can be transparent at one wavelength (λ) yet diffract efficiently at another (λ′), provided that the phase delay is an integer number of waves (e.g., 3) at λ and a half-integer number of waves (e.g., 2.5) at λ′. We fabricated a 7.9-μm-deep binary phase grating in BK7 glass that separates the standard telecommunications wavelengths, 1.3 and 1.55 μm, with 80% efficiency (neglecting Fresnel losses) and greater than 30:1 contrast.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Collier, C. Burckhardt, L. LinOptical Holography (Academic, New York, 1971), Sec. 9.2.
  2. G. Swanson, MIT Lincoln Laboratory Tech. Rep.854, ( August1989).
  3. J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116 (1990).

1990

J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116 (1990).

1971

R. Collier, C. Burckhardt, L. LinOptical Holography (Academic, New York, 1971), Sec. 9.2.

Bergstrom, J.

J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116 (1990).

Burckhardt, C.

R. Collier, C. Burckhardt, L. LinOptical Holography (Academic, New York, 1971), Sec. 9.2.

Collier, R.

R. Collier, C. Burckhardt, L. LinOptical Holography (Academic, New York, 1971), Sec. 9.2.

Cox, J.

J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116 (1990).

Fritz, B.

J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116 (1990).

Lee, J.

J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116 (1990).

Lin, L.

R. Collier, C. Burckhardt, L. LinOptical Holography (Academic, New York, 1971), Sec. 9.2.

Nelson, S.

J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116 (1990).

Swanson, G.

G. Swanson, MIT Lincoln Laboratory Tech. Rep.854, ( August1989).

Werner, T.

J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116 (1990).

Optical Holography

R. Collier, C. Burckhardt, L. LinOptical Holography (Academic, New York, 1971), Sec. 9.2.

Proc. Soc. Photo-Opt. Instrum. Eng.

J. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, Proc. Soc. Photo-Opt. Instrum. Eng. 1211, 116 (1990).

Other

G. Swanson, MIT Lincoln Laboratory Tech. Rep.854, ( August1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Effect of wavelength shift on half-wave and multiple-wave phase delay holograms. The path-length difference on wavelength shift is greater when the etch depth is increased. With the correct etch depth and index dispersion the phase delay at the second wavelength is zero, and there is no diffraction.

Fig. 2
Fig. 2

For each index of refraction at λ, only discrete indices at λ′ permit a color-selective hologram. Each line on these graphs show one combination of integer and half-integer phase delays for 1.55- and 1.3-μm light. The top plot shows those values that deflect 1.55 μm and transmit 1.3 μm, and the bottom plot shows the inverse. BK7 lies on the line for a phase delay of 2.5 wavelengths at 1.55 μm and 3 wavelengths at 1.3 μm.

Fig. 3
Fig. 3

Intensity at diffraction peaks for 1.3-μm (darker bars) and 1.55-μm (lighter bars) illumination. Bars do not correspond to spot sizes. Intensity between orders dropped to below 0.05%.

Fig. 4
Fig. 4

Demonstration of wavelength demultiplexing of 1.55-μm light, modulated at 1 kHz, and 1.3-μm light, modulated at 100 Hz. An input fiber carrying both signals is imaged to the output plane, where the 1.3-μm signal was transmitted on axis and the 1.55-μm signal was deflected equally into the +1st and −1st orders.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

wavelength  λ : ( n 1 ) t λ = Φ = p + ϕ ,
wavelength  λ : ( n 1 ) t λ = Φ = p + ϕ ,
λ ( p + ϕ ) ( n 1 ) = λ ( q + ϕ ) ( n Δ 1 ) .

Metrics