Abstract

Nonlinear pulse evolution is studied for a fiber with normal dispersion (ND) and gain. Numerical simulations show that under certain conditions the pulse evolves into a parabolic shape, which has been shown to reduce optical wave breaking. Much as with the square pulse that forms in passive fibers with ND, the interplay of ND and self-phase modulation creates a highly linear chirp, which can be efficiently compressed. Application to an amplifying fiber/grating (prism) pair pulse compressor is considered, with an experimental demonstration of compression from 350 to 77 fs at a gain of 18 dB in an erbium-doped fiber amplifier.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, Appl. Phys. Lett. 57, 1960 (1990).
    [CrossRef]
  2. M. Nakazawa, E. Yoshida, K. Kubota, Y. Kimura, Electron. Lett. 30, 2038 (1994).
    [CrossRef]
  3. D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1 (1982).
    [CrossRef]
  4. W. J. Tomlinson, R. J. Stolen, C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [CrossRef]
  5. M. Stock, G. Mourou, Opt. Commun. 106, 249 (1994).
    [CrossRef]
  6. W. J. Tomlinson, R. J. Stolen, A. M. Johnson, Opt. Lett. 10, 457 (1985).
    [CrossRef] [PubMed]
  7. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, M. L. Quiroga-Teixeiro, J. Opt. Soc. Am. B 10, 1185 (1993).
    [CrossRef]
  8. K. Tamura, C. R. Doerr, H. A. Haus, E. P. Ippen, IEEE Photon. Technol. Lett. 6, 697 (1994).
    [CrossRef]

1994 (3)

M. Nakazawa, E. Yoshida, K. Kubota, Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

M. Stock, G. Mourou, Opt. Commun. 106, 249 (1994).
[CrossRef]

K. Tamura, C. R. Doerr, H. A. Haus, E. P. Ippen, IEEE Photon. Technol. Lett. 6, 697 (1994).
[CrossRef]

1993 (1)

1990 (1)

M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, Appl. Phys. Lett. 57, 1960 (1990).
[CrossRef]

1985 (1)

1984 (1)

1982 (1)

D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1 (1982).
[CrossRef]

Anderson, D.

Balant, A. C.

D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1 (1982).
[CrossRef]

Desaix, M.

Doerr, C. R.

K. Tamura, C. R. Doerr, H. A. Haus, E. P. Ippen, IEEE Photon. Technol. Lett. 6, 697 (1994).
[CrossRef]

Grischkowsky, D.

D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1 (1982).
[CrossRef]

Haus, H. A.

K. Tamura, C. R. Doerr, H. A. Haus, E. P. Ippen, IEEE Photon. Technol. Lett. 6, 697 (1994).
[CrossRef]

Ippen, E. P.

K. Tamura, C. R. Doerr, H. A. Haus, E. P. Ippen, IEEE Photon. Technol. Lett. 6, 697 (1994).
[CrossRef]

Johnson, A. M.

Karlsson, M.

Kimura, Y.

M. Nakazawa, E. Yoshida, K. Kubota, Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

Kubota, H.

M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, Appl. Phys. Lett. 57, 1960 (1990).
[CrossRef]

Kubota, K.

M. Nakazawa, E. Yoshida, K. Kubota, Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

Kurokawa, K.

M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, Appl. Phys. Lett. 57, 1960 (1990).
[CrossRef]

Lisak, M.

Mourou, G.

M. Stock, G. Mourou, Opt. Commun. 106, 249 (1994).
[CrossRef]

Nakazawa, M.

M. Nakazawa, E. Yoshida, K. Kubota, Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, Appl. Phys. Lett. 57, 1960 (1990).
[CrossRef]

Quiroga-Teixeiro, M. L.

Shank, C. V.

Stock, M.

M. Stock, G. Mourou, Opt. Commun. 106, 249 (1994).
[CrossRef]

Stolen, R. J.

Suzuki, K.

M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, Appl. Phys. Lett. 57, 1960 (1990).
[CrossRef]

Tamura, K.

K. Tamura, C. R. Doerr, H. A. Haus, E. P. Ippen, IEEE Photon. Technol. Lett. 6, 697 (1994).
[CrossRef]

Tomlinson, W. J.

Yoshida, E.

M. Nakazawa, E. Yoshida, K. Kubota, Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1 (1982).
[CrossRef]

M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, Appl. Phys. Lett. 57, 1960 (1990).
[CrossRef]

Electron. Lett. (1)

M. Nakazawa, E. Yoshida, K. Kubota, Y. Kimura, Electron. Lett. 30, 2038 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Tamura, C. R. Doerr, H. A. Haus, E. P. Ippen, IEEE Photon. Technol. Lett. 6, 697 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

M. Stock, G. Mourou, Opt. Commun. 106, 249 (1994).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of compression with Cf ≃ 6 for Case A (solid curves, g = 40/3 dB/z0), Case B (dotted curves, N = 9.5 input taken at lopt), and Case C (dashed curves). The top, middle, and bottom figures correspond to spectra, compressed pulse intensities, and chirped pulse intensities, respectively. The bottom figure also shows a compressed pulse from Case A, and the dashed–dotted trace is a parabolic fit for Case A. A.U., Arbitrary units; lin., linear scale; log, log scale.

Fig. 2
Fig. 2

Pulse evolution in a NDFA with an N = 1 input pulse and g = 40/3 dB/z0. Pulses are normalized to constant energy. Spectra are normalized to peak.

Fig. 3
Fig. 3

Qi, Q τ ', and gain versus Cf for g (thin curves) of 30 dB over 0.1z0 (solid), 0.5z0 (dotted), z0 (short-dashed), 1.5z0 (medium-dashed), 2.0z0 (dashed–dotted), and 3.0z0 (long-dashed). Also shown are Qi and Q τ ' for Case B at lopt (thick, solid) and for Case C (thick, dashed).

Fig. 4
Fig. 4

Experimental results. Top and bottom are input (dashed), chirped (dotted), and compressed (solid) pulse spectra/autocorrelations, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

j d a d z = 1 2 β " d 2 a d t 2 κ | a | 2 a j 1 2 g a ,
a i ( t ) = P 0 sech ( t / τ ) .

Metrics