Abstract

We report the performance of a germanium quad-cell, composed of four avalanche photodiodes operated in the photon-counting regime, biased above the breakdown voltage. Each pixel detects a single photon in the wavelength range 1–1.5 μm with ~10% quantum efficiency and measures the photon arrival time with a time resolution of 100 ps. By adopting a multiplexed gating of the avalanche photodiodes we avoided the optical cross talk among pixels, thus achieving a noise-equivalent power of 3 × 10−15 W/Hz1/2 for each pixel and demonstrating the tracking capabilities of such a detector.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983).
  2. J. Hardy, Proc. IEEE 66, 651 (1978).
    [CrossRef]
  3. E. Gramsch, M. Szawlowski, S. Zhang, M. Madden, IEEE Trans. Nucl. Sci. 41, 762 (1994).
    [CrossRef]
  4. A. Lacaita, P. A. Francese, F. Zappa, S. Cova, Appl. Opt. 33, 6902 (1994).
    [CrossRef] [PubMed]
  5. S. Cova, M. Ghioni, A. Lacaita, S. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. (to be published).

1994

E. Gramsch, M. Szawlowski, S. Zhang, M. Madden, IEEE Trans. Nucl. Sci. 41, 762 (1994).
[CrossRef]

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, Appl. Opt. 33, 6902 (1994).
[CrossRef] [PubMed]

1983

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983).

1978

J. Hardy, Proc. IEEE 66, 651 (1978).
[CrossRef]

Cova, S.

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, Appl. Opt. 33, 6902 (1994).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, S. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. (to be published).

Francese, P. A.

Ghioni, M.

S. Cova, M. Ghioni, A. Lacaita, S. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. (to be published).

Gramsch, E.

E. Gramsch, M. Szawlowski, S. Zhang, M. Madden, IEEE Trans. Nucl. Sci. 41, 762 (1994).
[CrossRef]

Hardy, J.

J. Hardy, Proc. IEEE 66, 651 (1978).
[CrossRef]

Lacaita, A.

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, Appl. Opt. 33, 6902 (1994).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, S. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. (to be published).

Madden, M.

E. Gramsch, M. Szawlowski, S. Zhang, M. Madden, IEEE Trans. Nucl. Sci. 41, 762 (1994).
[CrossRef]

O’Connor, D. V.

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983).

Phillips, D.

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983).

Samori, S.

S. Cova, M. Ghioni, A. Lacaita, S. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. (to be published).

Szawlowski, M.

E. Gramsch, M. Szawlowski, S. Zhang, M. Madden, IEEE Trans. Nucl. Sci. 41, 762 (1994).
[CrossRef]

Zappa, F.

A. Lacaita, P. A. Francese, F. Zappa, S. Cova, Appl. Opt. 33, 6902 (1994).
[CrossRef] [PubMed]

S. Cova, M. Ghioni, A. Lacaita, S. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. (to be published).

Zhang, S.

E. Gramsch, M. Szawlowski, S. Zhang, M. Madden, IEEE Trans. Nucl. Sci. 41, 762 (1994).
[CrossRef]

Appl. Opt.

IEEE Trans. Nucl. Sci.

E. Gramsch, M. Szawlowski, S. Zhang, M. Madden, IEEE Trans. Nucl. Sci. 41, 762 (1994).
[CrossRef]

Proc. IEEE

J. Hardy, Proc. IEEE 66, 651 (1978).
[CrossRef]

Time-Correlated Single Photon Counting

D. V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1983).

Other

S. Cova, M. Ghioni, A. Lacaita, S. Samori, F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Top view of the germanium quad-cell. The four pixels have been named North, East, South, and West.

Fig. 2
Fig. 2

Counts of the West (W) and East (E) pixels, when a 10-μm laser spot is moved along the southwest–northeast diagonal of the quad-cell. The direction of the scan is intentionally closer to the West pixel.

Fig. 3
Fig. 3

Tracking of a 60-μm-diameter laser spot at 1.0-μm wavelength, when the quad-cell is driving an XY translation stage within a closed-loop servo system.

Fig. 4
Fig. 4

Timing response of one pixel of the quad-cell at 77 K and biased 2 V above breakdown. The width of the 1.3-μm laser pulse was 60 ps.

Metrics