Abstract

The microlaser microscope can use its own source lasers as detectors to provide a matched array of confocal apertures. Detection of the laser light by a single avalanche photodiode makes the electronics simple. We have implemented this in a 64 × 312 pixel format as our first demonstration of the device.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 48.
  2. R. H. Webb, Opt. Photon. News 2(7), 8 (1991).
    [CrossRef]
  3. R. H. Webb, G. W. Hughes, Appl. Opt. 32, 6227 (1993).
    [CrossRef] [PubMed]
  4. R. W. Tkach, A. R. Chraplyvy, J. Lightwave Technol. LT-4, 1655 (1986).
    [CrossRef]
  5. R. Juškaitis, T. Wilson, F. Reinholz, Opt. Lett. 18, 1135 (1993).
    [CrossRef]
  6. R. Juškaitis, N. Rea, T. Wilson, Appl. Opt. 33, 578 (1994).
    [CrossRef]
  7. Y. C. Chung, Y. H. Lee, IEEE Photon. Technol. Lett. 3, 597 (1991).
    [CrossRef]
  8. R. H. Webb, G. W. Hughes, F. C. Delori, Appl. Opt. 26, 1492 (1987).
    [CrossRef] [PubMed]

1994 (1)

1993 (2)

1991 (2)

R. H. Webb, Opt. Photon. News 2(7), 8 (1991).
[CrossRef]

Y. C. Chung, Y. H. Lee, IEEE Photon. Technol. Lett. 3, 597 (1991).
[CrossRef]

1987 (1)

1986 (1)

R. W. Tkach, A. R. Chraplyvy, J. Lightwave Technol. LT-4, 1655 (1986).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, J. Lightwave Technol. LT-4, 1655 (1986).
[CrossRef]

Chung, Y. C.

Y. C. Chung, Y. H. Lee, IEEE Photon. Technol. Lett. 3, 597 (1991).
[CrossRef]

Delori, F. C.

Hughes, G. W.

Juškaitis, R.

Lee, Y. H.

Y. C. Chung, Y. H. Lee, IEEE Photon. Technol. Lett. 3, 597 (1991).
[CrossRef]

Rea, N.

Reinholz, F.

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, J. Lightwave Technol. LT-4, 1655 (1986).
[CrossRef]

Webb, R. H.

R. H. Webb, G. W. Hughes, Appl. Opt. 32, 6227 (1993).
[CrossRef] [PubMed]

R. H. Webb, Opt. Photon. News 2(7), 8 (1991).
[CrossRef]

R. H. Webb, G. W. Hughes, F. C. Delori, Appl. Opt. 26, 1492 (1987).
[CrossRef] [PubMed]

R. H. Webb, in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 48.

Wilson, T.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

Y. C. Chung, Y. H. Lee, IEEE Photon. Technol. Lett. 3, 597 (1991).
[CrossRef]

J. Lightwave Technol. (1)

R. W. Tkach, A. R. Chraplyvy, J. Lightwave Technol. LT-4, 1655 (1986).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

R. H. Webb, Opt. Photon. News 2(7), 8 (1991).
[CrossRef]

Other (1)

R. H. Webb, in Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Microlaser microscope using a single APD, with the lasers themselves serving as the confocal pinhole(s).

Fig. 2
Fig. 2

Actual implementation. Since our matrix-addressable arrays are too small we use a linear array and add the second dimension by scanning with a galvanometer mirror.

Fig. 3
Fig. 3

Axial scan data for a brass (nonspecular) target with a N.A. = 0.15 objective and a drive current of 2.58 mA. The predicted half-width is 42 μm, and that measured is 67 μm.

Fig. 4
Fig. 4

View of a 50-μm hole.

Fig. 5
Fig. 5

Three views of a scratch in brass. Views (a) and (b) are 23 μm apart, whereas view (c) is nonconfocal; the beam splitter is reversed so that the APD sees only remitted light.

Metrics