Abstract

Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Levine, E. Ozizmir, R. Trebino, C. C. Hayden, A. M. Johnson, K. L. Tokuda, J. Opt. Soc. Am. B 11, 1609 (1994).
    [CrossRef]
  2. J. L. A. Chilla, O. E. Martinez, Opt. Lett. 16, 39 (1991).
    [CrossRef] [PubMed]
  3. D. J. Kane, R. Trebino, Opt. Lett. 18, 823 (1993).
    [CrossRef] [PubMed]
  4. R. Trebino, D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]
  5. K. W. DeLong, R. Trebino, D. J. Kane, J. Opt. Soc. Am. B 11, 1595 (1994).
    [CrossRef]
  6. K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, K. Wilson, Opt. Lett. 19, 2152 (1994).
    [CrossRef] [PubMed]
  7. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus, J. Opt. Soc. Am. B 6, 1159 (1989).
    [CrossRef]
  8. R. H. Stolen, W. J. Tomlinson, J. Opt. Soc. Am. B 9, 565 (1992).
    [CrossRef]
  9. R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
    [CrossRef]
  10. K. J. Blow, D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
    [CrossRef]
  11. R. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
    [CrossRef]
  12. K. W. DeLong, R. Trebino, J. Opt. Soc. Am. A 11, 2429 (1994).
    [CrossRef]

1994 (4)

1993 (2)

1992 (1)

1991 (1)

1989 (2)

1977 (1)

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

1975 (1)

R. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Blow, K. J.

K. J. Blow, D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Cherlow, J.

R. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Chilla, J. L. A.

DeLong, K. W.

Fittinghoff, D. N.

Gordon, J. P.

Haus, H. A.

Hayden, C. C.

Hellwarth, R.

R. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[CrossRef]

Johnson, A. M.

Kane, D. J.

Kohler, B.

Levine, A. M.

Martinez, O. E.

Ozizmir, E.

Stolen, R. H.

Tokuda, K. L.

Tomlinson, W. J.

Trebino, R.

Wilson, K.

Wood, D.

K. J. Blow, D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Yang, T.-T.

R. Hellwarth, J. Cherlow, T.-T. Yang, Phys. Rev. B 11, 964 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PG FROG trace of a transform-limited Gaussian pulse with a FWHM of 25 fs. The material response function of fused silica, including the effects of the slow Raman terms, is used to generate the trace. The small features extending to negative delay times are the result of the Raman terms. If the material response were truly instantaneous, the trace would be a perfect ellipse. The trace background is set to black wherever the intensity is less than 10−4 of the peak in order to accentuate the slight distortion of the trace.

Fig. 2
Fig. 2

Amount of temporal broadening in the pulse retrieved with the standard FROG algorithm that is due to the noninstantaneous Raman response of fused silica.

Fig. 3
Fig. 3

Intensity and phase in (a) the time domain and (b) the frequency domain of the pulse retrieved (solid curve with dots) by the standard FROG algorithm from a FROG trace (Fig. 1) distorted by the Raman response of fused silica. The original pulse (solid curve) was a 25-fs FWHM transform-limited Gaussian pulse. The standard FROG algorithm retrieves a pulse that is 8% longer in its temporal FWHM and that has acquired some spectral cubic phase.

Fig. 4
Fig. 4

Comparison of the pulse intensities derived by the normal instantaneous-response-based FROG algorithm and the algorithm modified to include the Raman response of fused silica. The Raman-aware algorithm achieved a lower error (0.00622 compared with 0.00733) and a shorter pulse (42.4 fs compared with 43.9 fs). The pulse phase is also shown. Inset: The PG FROG trace of the pulse. The tails seen in this trace are due mostly to residual third-order phase in the grating compressor, not to the Raman effect.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ( 3 ) ( t ) = 3 2 σ E ( t ) E ( t ) 2 + 2 E ( t ) - t d t [ a ( t - t ) + b ( t - t ) ] E ( t ) 2 ,
P ( 3 ) ( t , τ ) = σ E ( t ) E ( t - τ ) 2 + E ( t ) × - t d t b ( t - t ) E ( t - τ ) 2 + E ( t - τ ) - t d t [ 2 a ( t - t ) + b ( t - t ) ] E ( t ) E * ( t - τ ) ,
a ( t ) = 43 57 τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( - t / τ 2 ) sin ( t / τ 1 )
Z = i , j = 1 N E sig ( t i , τ j ) - P ( 3 ) ( t i , τ j ) 2 .

Metrics