Abstract

Using single-shot, self-diffraction, frequency-resolved optical gating, we measure the complete electric field amplitude and phase of 405-nm second-harmonic pulses from an amplified Ti:sapphire system. The single-shot frequency-resolved optical gating device gives both qualitative and quantitative information, which is useful for analyzing and optimizing the grating compressor in the chirped-pulse amplification system.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino, D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]
  2. M. Beck, M. G. Raymer, I. A Walmsley, V. Wong, Opt. Lett. 18, 2041 (1993).
    [CrossRef] [PubMed]
  3. J. Paye, M. Ramaswamy, J. G. Fujimoto, E. Ippen, Opt. Lett. 18, 1946 (1993).
    [CrossRef] [PubMed]
  4. D. J. Kane, R. Trebino, Opt. Lett. 18, 823 (1993).
    [CrossRef] [PubMed]
  5. D. J. Kane, A. J. Taylor, R. Trebino, K. W. DeLong, Opt. Lett. 19, 1061 (1994).
    [CrossRef] [PubMed]
  6. D. J. Kane, R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  7. G. Rodriguez, J. P. Roberts, A. J. Taylor, Opt. Lett. 19, 1146 (1994).
    [CrossRef] [PubMed]
  8. B. Bouma, T. S. Luk, K. Boyer, C. K. Rhodes, J. Opt. Soc. Am. B 10, 1180 (1993).
    [CrossRef]
  9. Y. Nabekawa, K. Kondo, N. Sarukura, K. Sajiki, S. Watanabe, Opt. Lett. 18, 1922 (1993).
    [CrossRef] [PubMed]
  10. J. Ringling, O. Kittlemann, F. Noack, G. Korn, J. Squier, Opt. Lett. 18, 2035 (1993).
    [CrossRef] [PubMed]
  11. K. W. DeLong, R. Trebino, J. Opt. Soc. Am. A 11, 2429 (1994).
    [CrossRef]

1994

1993

Beck, M.

Bouma, B.

Boyer, K.

DeLong, K. W.

Fujimoto, J. G.

Ippen, E.

Kane, D. J.

Kittlemann, O.

Kondo, K.

Korn, G.

Luk, T. S.

Nabekawa, Y.

Noack, F.

Paye, J.

Ramaswamy, M.

Raymer, M. G.

Rhodes, C. K.

Ringling, J.

Roberts, J. P.

Rodriguez, G.

Sajiki, K.

Sarukura, N.

Squier, J.

Taylor, A. J.

Trebino, R.

Walmsley, I. A

Watanabe, S.

Wong, V.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental apparatus for single-shot, self-diffraction FROG. The self-diffracted signal in the sample plane is imaged onto the input slit of an imaging spectrometer, which spectrally resolves the signal at each point in time. Inset: Because most of the diffracted light comes from the times τ/3 of one pulse and −2τ/3 of the other pulse, the diffracted (FROG) pulse, when spectrally analyzed, indicates the frequencies from both of these regions of the input pulse.

Fig. 2
Fig. 2

Experimental single-shot, self-diffraction FROG trace of the second harmonic of the Ti:sapphire system.

Fig. 3
Fig. 3

Experimental single-shot, self-diffraction FROG trace of a chirped pulse from the second harmonic of the Ti:sapphire system. We obtained the pulse by changing the path length between the two gratings in the pulse compressor.

Fig. 4
Fig. 4

Derived temporal intensity (squares) and phase (circles) for the experimentally measured FROG traces in (a) Fig. 2 and (b) Fig. 3. The parabolic phase in (b) indicates a negative linear chirp.

Fig. 5
Fig. 5

Derived spectral intensity (squares) and phase (circles) for the experimentally measured FROG trace in Fig. 2.

Fig. 6
Fig. 6

Derived spectral intensity (squares) and phase (circles) for the experimentally measured FROG trace in Fig. 5. The dashed curve is a calculation of the group-velocity dispersion for a change in the compressor grating distance of 600 μm, giving a change in the group-velocity dispersion, Δϕ(2)(ω), of 5400 fs2.

Metrics