Abstract

The Kerr-effect error in the fiber-optic gyroscope is modeled as arising from continuous reflections off a refractive-index grating set up by the counterpropagating beams. This reflection-hologram model is shown to predict correctly the source statistics necessary for suppressing the error.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Kaplan, P. Meystre, Opt. Lett. 6, 590 (1981).
    [CrossRef] [PubMed]
  2. S. Ezekiel, J. L. Davis, R. Hellwarth, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Heidelberg, 1982), pp. 332–336.
  3. S. Ezekiel, J. L. Davis, R. W. Hellwarth, Opt. Lett. 7, 457 (1982).
    [CrossRef] [PubMed]
  4. R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 7, 282 (1982).
    [CrossRef] [PubMed]
  5. R. A. Bergh, B. Culshaw, C. C. Cutler, H. C. Lefevre, H. J. Shaw, Opt. Lett. 7, 563 (1982).
    [CrossRef] [PubMed]
  6. N. J. Frigo, H. F. Taylor, L. Goldberg, J. F. Weller, S. C. Rashleigh, Opt. Lett. 8, 119 (1983).
    [CrossRef] [PubMed]
  7. K. Petermann, Opt. Lett. 7, 623 (1982).
    [CrossRef] [PubMed]
  8. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech, Dedham, Mass., 1993), pp. 101–106.
  9. B. Ya. Zeldovich, Brief Communications in Physics (Lebedev Physical Institute, Moscow, 1970), No. 5, pp. 20–25.
  10. J. Goodman, in Statistical Optics (Wiley, New York, 1985), Chap. 4, pp. 120–124.
  11. R. A. Griffin, D. D. Sampson, D. A. Jackson, in Proceedings of the Ninth Optical Fiber Sensors Conference (Associazione Elettrotecnica ed Elettronica Italiana, Firenze, Italy, 1993), pp. 237–240.

1983 (1)

1982 (4)

1981 (1)

Bergh, R. A.

Culshaw, B.

Cutler, C. C.

Davis, J. L.

S. Ezekiel, J. L. Davis, R. W. Hellwarth, Opt. Lett. 7, 457 (1982).
[CrossRef] [PubMed]

S. Ezekiel, J. L. Davis, R. Hellwarth, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Heidelberg, 1982), pp. 332–336.

Ezekiel, S.

S. Ezekiel, J. L. Davis, R. W. Hellwarth, Opt. Lett. 7, 457 (1982).
[CrossRef] [PubMed]

S. Ezekiel, J. L. Davis, R. Hellwarth, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Heidelberg, 1982), pp. 332–336.

Frigo, N. J.

Goldberg, L.

Goodman, J.

J. Goodman, in Statistical Optics (Wiley, New York, 1985), Chap. 4, pp. 120–124.

Griffin, R. A.

R. A. Griffin, D. D. Sampson, D. A. Jackson, in Proceedings of the Ninth Optical Fiber Sensors Conference (Associazione Elettrotecnica ed Elettronica Italiana, Firenze, Italy, 1993), pp. 237–240.

Hellwarth, R.

S. Ezekiel, J. L. Davis, R. Hellwarth, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Heidelberg, 1982), pp. 332–336.

Hellwarth, R. W.

Jackson, D. A.

R. A. Griffin, D. D. Sampson, D. A. Jackson, in Proceedings of the Ninth Optical Fiber Sensors Conference (Associazione Elettrotecnica ed Elettronica Italiana, Firenze, Italy, 1993), pp. 237–240.

Kaplan, A. E.

Lefevre, H. C.

Meystre, P.

Petermann, K.

Rashleigh, S. C.

Sampson, D. D.

R. A. Griffin, D. D. Sampson, D. A. Jackson, in Proceedings of the Ninth Optical Fiber Sensors Conference (Associazione Elettrotecnica ed Elettronica Italiana, Firenze, Italy, 1993), pp. 237–240.

Shaw, H. J.

Taylor, H. F.

Weller, J. F.

Zeldovich, B. Ya.

B. Ya. Zeldovich, Brief Communications in Physics (Lebedev Physical Institute, Moscow, 1970), No. 5, pp. 20–25.

Opt. Lett. (6)

Other (5)

S. Ezekiel, J. L. Davis, R. Hellwarth, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Heidelberg, 1982), pp. 332–336.

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech, Dedham, Mass., 1993), pp. 101–106.

B. Ya. Zeldovich, Brief Communications in Physics (Lebedev Physical Institute, Moscow, 1970), No. 5, pp. 20–25.

J. Goodman, in Statistical Optics (Wiley, New York, 1985), Chap. 4, pp. 120–124.

R. A. Griffin, D. D. Sampson, D. A. Jackson, in Proceedings of the Ninth Optical Fiber Sensors Conference (Associazione Elettrotecnica ed Elettronica Italiana, Firenze, Italy, 1993), pp. 237–240.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Fiber gyro loop with intensity grating.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E cw ( z , t ) = A ( t z υ ) exp [ j ( k z ω t ) ] ,
E ccw ( z , t ) = B ( t L z υ ) × exp [ j ( k L k z ω t ) ] ,
I ( z , t ) = | E cw + E ccw | 2 2 η = 1 2 η { | A ( t z υ ) | 2 + | B ( t L z υ ) | 2 + A ( t z υ ) B * ( t L z υ ) × exp [ j ( 2 k z k L ) ] + c . c . } ,
n ( z , t ) = n 0 + 2 η n 2 I ( z , t ) ,
ρ cw ccw ( z , t ) = η n 2 n 0 d I ( z , t ) d z ,
ρ ccw cw = ρ cw ccw ( z , t ) .
ρ cw ccw ( z , t ) j k n 2 n 0 { A ( t z υ ) B * ( t L z υ ) × exp [ j ( 2 k z k L ) ] } + c . c .
Δ E cw ( L , t ) = 0 L ρ ccw cw ( z , t L z υ ) × E ccw ( z , t L z υ ) d z .
Δ E cw ( L , t ) = j 2 π n 2 λ E cw ( L , t ) × 0 L | B [ t 2 ( L z ) υ | 2 d z .
Δ ϕ cw 1 = 2 π L n 2 λ 2 η I ccw .
Δ ϕ ccw 1 = 2 π L n 2 λ 2 η I ccw .
Δ ϕ cw 2 = 2 π L n 2 λ 2 η ( I cw + I ccw ) ,
Δ ϕ ccw 2 = 2 π L n 2 λ 2 η ( I ccw + I cw ) ,
Δ ϕ cw = 2 π L n 2 λ 2 η ( I cw + 2 I ccw ) ,
Δ ϕ ccw = 2 π L n 2 λ 2 η ( I ccw + 2 I cw ) .

Metrics