Abstract

A single-mode Nd3+-doped tellurite glass fiber laser operating at 1.061 μm is described. We believe this is the first demonstration of a single-mode fiber laser in tellurite glass. A lasing threshold of 27 mW of 818-nm absorbed pump power and a slope efficiency output power versus pump power of 23% emitted from one end were observed in the fiber cavity with 11.9% Fresnel reflection at both ends.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer, Phys. Rev. Lett. 7, 444 (1961).
    [CrossRef]
  2. S. E. Stokowski, R. A. Saroyan, M. J. Weber, eds., Laser Glass Nd3+-Doped Glass Spectroscopic and Physical Properties (Lawrence Livermore National Laboratory, Livermore, Calif., 1981).
  3. J. Stone, C. A. Burrus, Appl. Opt. 13, 1256 (1974).
    [CrossRef] [PubMed]
  4. M. C. Berierley, P. W. France, Electron. Lett. 23, 815 (1987).
    [CrossRef]
  5. T. Yamashita, Proc. Soc. Photo-Opt. Instrum. Eng. 1171, 291 (1989).
  6. J. S. Wang, E. Snitzer, E. M. Vogel, J. G. H. Sigel, J. Lumin. 60/61, 145 (1994).
  7. J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3-μm Emission of Nd3+ and Pr3+ in TeO2-based glass,” J. Non-Cryst. Solids (to be published).
  8. N. Spector, R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 49 (1977).
    [CrossRef]
  9. R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 251 (1977).
    [CrossRef]

1994 (1)

J. S. Wang, E. Snitzer, E. M. Vogel, J. G. H. Sigel, J. Lumin. 60/61, 145 (1994).

1989 (1)

T. Yamashita, Proc. Soc. Photo-Opt. Instrum. Eng. 1171, 291 (1989).

1987 (1)

M. C. Berierley, P. W. France, Electron. Lett. 23, 815 (1987).
[CrossRef]

1977 (2)

N. Spector, R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 49 (1977).
[CrossRef]

R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 251 (1977).
[CrossRef]

1974 (1)

1961 (1)

E. Snitzer, Phys. Rev. Lett. 7, 444 (1961).
[CrossRef]

Berierley, M. C.

M. C. Berierley, P. W. France, Electron. Lett. 23, 815 (1987).
[CrossRef]

Boehm, L.

N. Spector, R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 49 (1977).
[CrossRef]

R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 251 (1977).
[CrossRef]

Burrus, C. A.

da Silva, V. L.

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3-μm Emission of Nd3+ and Pr3+ in TeO2-based glass,” J. Non-Cryst. Solids (to be published).

France, P. W.

M. C. Berierley, P. W. France, Electron. Lett. 23, 815 (1987).
[CrossRef]

Jackel, J. L.

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3-μm Emission of Nd3+ and Pr3+ in TeO2-based glass,” J. Non-Cryst. Solids (to be published).

Lumin, J.

J. S. Wang, E. Snitzer, E. M. Vogel, J. G. H. Sigel, J. Lumin. 60/61, 145 (1994).

Reisfeld, R.

R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 251 (1977).
[CrossRef]

N. Spector, R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 49 (1977).
[CrossRef]

Sigel, J. G. H.

J. S. Wang, E. Snitzer, E. M. Vogel, J. G. H. Sigel, J. Lumin. 60/61, 145 (1994).

Silberberg, Y.

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3-μm Emission of Nd3+ and Pr3+ in TeO2-based glass,” J. Non-Cryst. Solids (to be published).

Snitzer, E.

J. S. Wang, E. Snitzer, E. M. Vogel, J. G. H. Sigel, J. Lumin. 60/61, 145 (1994).

E. Snitzer, Phys. Rev. Lett. 7, 444 (1961).
[CrossRef]

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3-μm Emission of Nd3+ and Pr3+ in TeO2-based glass,” J. Non-Cryst. Solids (to be published).

Spector, N.

N. Spector, R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 49 (1977).
[CrossRef]

Stone, J.

Vogel, E. M.

J. S. Wang, E. Snitzer, E. M. Vogel, J. G. H. Sigel, J. Lumin. 60/61, 145 (1994).

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3-μm Emission of Nd3+ and Pr3+ in TeO2-based glass,” J. Non-Cryst. Solids (to be published).

Wang, J. S.

J. S. Wang, E. Snitzer, E. M. Vogel, J. G. H. Sigel, J. Lumin. 60/61, 145 (1994).

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3-μm Emission of Nd3+ and Pr3+ in TeO2-based glass,” J. Non-Cryst. Solids (to be published).

Yamashita, T.

T. Yamashita, Proc. Soc. Photo-Opt. Instrum. Eng. 1171, 291 (1989).

Appl. Opt. (1)

Chem. Phys. Lett. (2)

N. Spector, R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 49 (1977).
[CrossRef]

R. Reisfeld, L. Boehm, Chem. Phys. Lett. 49, 251 (1977).
[CrossRef]

Electron. Lett. (1)

M. C. Berierley, P. W. France, Electron. Lett. 23, 815 (1987).
[CrossRef]

Phys. Rev. Lett. (1)

E. Snitzer, Phys. Rev. Lett. 7, 444 (1961).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

T. Yamashita, Proc. Soc. Photo-Opt. Instrum. Eng. 1171, 291 (1989).

Other (3)

J. S. Wang, E. Snitzer, E. M. Vogel, J. G. H. Sigel, J. Lumin. 60/61, 145 (1994).

J. S. Wang, E. M. Vogel, E. Snitzer, J. L. Jackel, V. L. da Silva, Y. Silberberg, “1.3-μm Emission of Nd3+ and Pr3+ in TeO2-based glass,” J. Non-Cryst. Solids (to be published).

S. E. Stokowski, R. A. Saroyan, M. J. Weber, eds., Laser Glass Nd3+-Doped Glass Spectroscopic and Physical Properties (Lawrence Livermore National Laboratory, Livermore, Calif., 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Laser output power from one end at 1.061 μm versus pump-power (0.818 μm) for Nd3+-doped tellurite fiber, where L = 0.6 m and R1 = R2 = 11.9%. The total laser efficiency above threshold is 46%.

Fig. 2.
Fig. 2.

(a) The fluorescence spectrum of a bulk sample, (b) superfluorescence spectrum of fiber for pumping below laser threshold, (c) laser output spectrum for pumping above threshold, and (d) laser output spectrum well above laser threshold.

Tables (1)

Tables Icon

Table 1. Comparison of Selected Properties for Tellurite, Silica, Fluoride, and Chacogenide Glasses

Metrics