Abstract

An optical scheme for a remote measurement of mode-coupling coefficients in birefringent fiber is proposed that uses wavelength scanning, white-light interferometry, and two phase-shifted channels for output spectrum detection. The procedure is outlined for two-channel signal processing. This technique can be used to develop distributed fiber-optic sensor for remote sensing. Its experimental verification is presented.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, Phys. Rep. 169, 99 (1988).
    [CrossRef]
  2. A. J. Rogers, V. A. Handerek, Appl. Opt. 31, 4091 (1992).
    [CrossRef] [PubMed]
  3. V. Gusmeroli, M. Martinelli, P. Vavassori, Opt. Lett. 14, 1330 (1989).
    [CrossRef] [PubMed]
  4. M. Tsubokawa, T. Higashi, Y. Negishi, Appl. Opt. 27, 166 (1988).
    [CrossRef] [PubMed]
  5. K. Kurosawa, S. Hattori, T. Yoshino, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 36 (1987).
  6. A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Opt. Lett. 18, 2065 (1993).
    [CrossRef] [PubMed]
  7. A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Proc. Soc. Photo-Opt. Instrum. Eng. 2003, 49 (1993).

1993 (2)

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Opt. Lett. 18, 2065 (1993).
[CrossRef] [PubMed]

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Proc. Soc. Photo-Opt. Instrum. Eng. 2003, 49 (1993).

1992 (1)

1989 (1)

1988 (2)

1987 (1)

K. Kurosawa, S. Hattori, T. Yoshino, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 36 (1987).

Gusmeroli, V.

Handerek, V. A.

Hattori, S.

K. Kurosawa, S. Hattori, T. Yoshino, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 36 (1987).

Higashi, T.

Khomenko, A.

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Opt. Lett. 18, 2065 (1993).
[CrossRef] [PubMed]

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Proc. Soc. Photo-Opt. Instrum. Eng. 2003, 49 (1993).

Kurosawa, K.

K. Kurosawa, S. Hattori, T. Yoshino, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 36 (1987).

Martinelli, M.

Miridonov, S.

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Opt. Lett. 18, 2065 (1993).
[CrossRef] [PubMed]

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Proc. Soc. Photo-Opt. Instrum. Eng. 2003, 49 (1993).

Negishi, Y.

Rogers, A. J.

Shlyagin, M.

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Proc. Soc. Photo-Opt. Instrum. Eng. 2003, 49 (1993).

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Opt. Lett. 18, 2065 (1993).
[CrossRef] [PubMed]

Tentori, D.

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Opt. Lett. 18, 2065 (1993).
[CrossRef] [PubMed]

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Proc. Soc. Photo-Opt. Instrum. Eng. 2003, 49 (1993).

Tsubokawa, M.

Vavassori, P.

Yoshino, T.

K. Kurosawa, S. Hattori, T. Yoshino, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 36 (1987).

Appl. Opt. (2)

Opt. Lett. (2)

Phys. Rep. (1)

A. J. Rogers, Phys. Rep. 169, 99 (1988).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

A. Khomenko, M. Shlyagin, S. Miridonov, D. Tentori, Proc. Soc. Photo-Opt. Instrum. Eng. 2003, 49 (1993).

K. Kurosawa, S. Hattori, T. Yoshino, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 36 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Diagram of the zero-point relocation; f(z) is the frequency of the output spectrum modulation.

Fig. 3
Fig. 3

Modulus of the coupling coefficient as a function of the additional path difference introduced during the data processing, Le, and of zLe.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = S ( λ ) 2 { 1 + k ( z ) sin 2 π [ Δ n ( λ ) z λ l 0 λ ] + A } ,
f ( z , λ ) = z Δ n g ( λ ) l 0 λ 2 ,
I 1 ( λ ) = k ( z ) sin { 2 π λ [ Δ n ( λ ) z l 0 ] } , I 2 ( λ ) = k ( z ) cos { 2 π λ [ Δ n ( λ ) z l 0 ] } .
I S ( λ ) = I 1 ( λ ) cos { 2 π λ [ l 0 L e Δ n ( λ ) ] } + I 2 ( λ ) sin { 2 π λ [ l 0 L e Δ n ( λ ) ] } = k ( z ) sin [ 2 π λ ( z L e ) Δ n ( λ ) ] ,
Δ n ( λ ) = [ 7 . 685 + 0 . 384 ( 1 / λ 2 . 135 ) 2 1 . 106 / λ ] × 10 4 ,

Metrics