Abstract

We present a new class of dark circularly symmetric solitary wave in bulk, self-defocusing Kerr media. The waves comprise two orthogonally polarized fields mutually guiding each other and forming separate polarization domains. The stability of these new solutions and the dynamics of related structures are briefly investigated.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
    [CrossRef]
  2. D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, W. G. Wagner, IEEE J. Quantum Electron. QE-2, 553 (1966).
    [CrossRef]
  3. G. R. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
    [CrossRef] [PubMed]
  4. A. W. Snyder, L. Poladian, D. J. Mitchell, Opt. Lett. 17, 789 (1992).
    [CrossRef] [PubMed]
  5. C. R. Menyuk, Opt. Lett. 12, 614 (1987).
    [CrossRef] [PubMed]
  6. S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).
  7. D. N. Christodoulides, R. I. Joseph, Opt. Lett. 13, 53 (1988).
    [CrossRef] [PubMed]
  8. M. Haelterman, A. P. Sheppard, A. W. Snyder, Opt. Lett. 18, 1406 (1993).
    [CrossRef] [PubMed]
  9. M. V. Tratnik, J. E. Sipe, Phys. Rev. A 38, 2011 (1988).
    [CrossRef] [PubMed]
  10. V. E. Zakharov, A. V. Mikhailov, JETP Lett. 45, 349 (1987).
  11. M. Haelterman, A. P. Sheppard, Opt. Lett. 19, 96 (1994).
    [CrossRef] [PubMed]
  12. P. D. Maker, R. W. Terhune, Phys. Rev. Lett. 12, 507 (1964).
    [CrossRef]
  13. R. De la Fuente, A. Barthelemy, C. Froehly, Opt. Lett. 16, 793 (1991).
    [CrossRef] [PubMed]

1994 (1)

1993 (1)

1992 (2)

1991 (1)

1988 (2)

1987 (2)

C. R. Menyuk, Opt. Lett. 12, 614 (1987).
[CrossRef] [PubMed]

V. E. Zakharov, A. V. Mikhailov, JETP Lett. 45, 349 (1987).

1974 (1)

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

1966 (1)

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, W. G. Wagner, IEEE J. Quantum Electron. QE-2, 553 (1966).
[CrossRef]

1964 (2)

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

P. D. Maker, R. W. Terhune, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Barthelemy, A.

Chiao, R. Y.

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

Christodoulides, D. N.

Close, D. H.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, W. G. Wagner, IEEE J. Quantum Electron. QE-2, 553 (1966).
[CrossRef]

De la Fuente, R.

Froehly, C.

Garmire, E.

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

Giuliano, C. R.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, W. G. Wagner, IEEE J. Quantum Electron. QE-2, 553 (1966).
[CrossRef]

Haelterman, M.

Hellwarth, R. W.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, W. G. Wagner, IEEE J. Quantum Electron. QE-2, 553 (1966).
[CrossRef]

Hess, L. D.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, W. G. Wagner, IEEE J. Quantum Electron. QE-2, 553 (1966).
[CrossRef]

Joseph, R. I.

Law, C. T.

G. R. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Maker, P. D.

P. D. Maker, R. W. Terhune, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Manakov, S. V.

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

McClung, F. J.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, W. G. Wagner, IEEE J. Quantum Electron. QE-2, 553 (1966).
[CrossRef]

Menyuk, C. R.

Mikhailov, A. V.

V. E. Zakharov, A. V. Mikhailov, JETP Lett. 45, 349 (1987).

Mitchell, D. J.

Poladian, L.

Sheppard, A. P.

Sipe, J. E.

M. V. Tratnik, J. E. Sipe, Phys. Rev. A 38, 2011 (1988).
[CrossRef] [PubMed]

Snyder, A. W.

Swartzlander, G. R.

G. R. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

Terhune, R. W.

P. D. Maker, R. W. Terhune, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Townes, C. H.

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

Tratnik, M. V.

M. V. Tratnik, J. E. Sipe, Phys. Rev. A 38, 2011 (1988).
[CrossRef] [PubMed]

Wagner, W. G.

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, W. G. Wagner, IEEE J. Quantum Electron. QE-2, 553 (1966).
[CrossRef]

Zakharov, V. E.

V. E. Zakharov, A. V. Mikhailov, JETP Lett. 45, 349 (1987).

IEEE J. Quantum Electron. (1)

D. H. Close, C. R. Giuliano, R. W. Hellwarth, L. D. Hess, F. J. McClung, W. G. Wagner, IEEE J. Quantum Electron. QE-2, 553 (1966).
[CrossRef]

JETP Lett. (1)

V. E. Zakharov, A. V. Mikhailov, JETP Lett. 45, 349 (1987).

Opt. Lett. (6)

Phys. Rev. A (1)

M. V. Tratnik, J. E. Sipe, Phys. Rev. A 38, 2011 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

G. R. Swartzlander, C. T. Law, Phys. Rev. Lett. 69, 2503 (1992).
[CrossRef] [PubMed]

P. D. Maker, R. W. Terhune, Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Sov. Phys. JETP (1)

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Radial profiles of both polarization components for the four different varieties of At the left-hand side of each figure the field profiles near the bifurcation points are shown; at the right-hand sides the profiles at the other end of the solution branches are shown.

Fig. 2
Fig. 2

Evolution of the intensity of one linearly polarized field component. We show one complete rotation of the lobes of the (0, 1) solution.

Fig. 3
Fig. 3

Evolution of the intensity in the surrounding field component. The other polarization, confined to the central dark region, is not shown here. At z = 150 the field is unchanging and has evolved into the (0, 0) solitary wave.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i U z + 1 2 ( 2 U r 2 + 1 r U r + 1 r 2 2 U φ 2 ) 1 2 [ ( 1 B ) | U | 2 + ( 1 + B ) | V | 2 ] U = 0 ,
i V z + 1 2 ( 2 V r 2 + 1 r V r + 1 r 2 2 V φ 2 ) 1 2 [ ( 1 B ) | V | 2 + ( 1 + B ) | U | 2 ] V = 0 .
2 α u + u rr + 1 r u r l 2 r 2 u [ ( 1 B ) u 2 + ( 1 + B ) v 2 ] u = 0 ,
2 β v + v rr + 1 r v r m 2 r 2 v [ ( 1 B ) v 2 + ( 1 + B ) u 2 ] v = 0 .
| E x ( r 0 , φ , z ) | 2 = u ( r 0 ) 2 { 1 + cos [ ( l m ) φ ( α β ) z ] } .

Metrics