Abstract

We demonstrate a method for nonintrusive scanned near-field optical microscopy. The microscope utilizes an optical trap to position accurately a 50–100-nm-diameter lithium niobate particle. The infrared trapping beam is frequency doubled in the particle, resulting in a visible microscopic optical probe. By separation of the trapping and detection wavelengths, objects that are transparent in the infrared (e.g., biological) may be positioned close to the particle, resulting in high resolution. The current experimental resolution is limited to approximately 500 nm by the properties of the test objects. The theoretical resolution is less than 100 nm.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, in Advances in Optical and Electron Microscopy, C. J. R. Sheppard, T. Mulvey, eds. (Academic, London, 1991), Vol. 12, pp. 243–312.
  2. E. Betzig, J. K. Trautman, Science 257, 189 (1992).
    [CrossRef] [PubMed]
  3. U. Ch. Fischer, D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989).
    [CrossRef] [PubMed]
  4. A. Lewis, K. Lieberman, Nature (London) 354, 214 (1991).
    [CrossRef]
  5. L. Malmqvist, H. M. Hertz, Opt. Commun. 94, 19 (1992).
    [CrossRef]
  6. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  7. S. M. Block, in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley, New York, 1990), pp. 375–402.
  8. S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
    [CrossRef]
  9. M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 3, p. 33.
  10. H. M. Hertz, L. Malmqvist, L. Rosengren, K. Ljungberg, “Optically trapped nonlinear particles as probes for scanning near field optical microscopy,”Ultramicroscopy (to be published).
  11. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12, p. 513.
  12. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
    [CrossRef]
  13. J. Israelachvili, Intermolecular and Surface Forces (Academic, San Diego, Calif., 1992), Chaps. 11 and 12, pp. 176–259.
  14. W. A. Ducker, T. J. Senden, R. M. Pashley, Nature (London) 353, 239 (1991).
    [CrossRef]
  15. Y. Leviatan, J. Appl. Phys. 60, 1577 (1986).
    [CrossRef]
  16. E. Betzig, P. L. Finn, J. S. Wiener, Appl. Phys. Lett. 60, 2484 (1992).
    [CrossRef]

1992 (4)

E. Betzig, J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

L. Malmqvist, H. M. Hertz, Opt. Commun. 94, 19 (1992).
[CrossRef]

S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Wiener, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

1991 (2)

W. A. Ducker, T. J. Senden, R. M. Pashley, Nature (London) 353, 239 (1991).
[CrossRef]

A. Lewis, K. Lieberman, Nature (London) 354, 214 (1991).
[CrossRef]

1989 (1)

U. Ch. Fischer, D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989).
[CrossRef] [PubMed]

1986 (2)

1943 (1)

S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[CrossRef]

Ashkin, A.

Betzig, E.

E. Betzig, J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

E. Betzig, P. L. Finn, J. S. Wiener, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

S. M. Block, in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley, New York, 1990), pp. 375–402.

Chandrasekhar, S.

S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[CrossRef]

Chu, S.

Ducker, W. A.

W. A. Ducker, T. J. Senden, R. M. Pashley, Nature (London) 353, 239 (1991).
[CrossRef]

Dziedzic, J. M.

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Wiener, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

Fischer, U. Ch.

U. Ch. Fischer, D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989).
[CrossRef] [PubMed]

Hertz, H. M.

L. Malmqvist, H. M. Hertz, Opt. Commun. 94, 19 (1992).
[CrossRef]

H. M. Hertz, L. Malmqvist, L. Rosengren, K. Ljungberg, “Optically trapped nonlinear particles as probes for scanning near field optical microscopy,”Ultramicroscopy (to be published).

Inaba, H.

S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
[CrossRef]

Israelachvili, J.

J. Israelachvili, Intermolecular and Surface Forces (Academic, San Diego, Calif., 1992), Chaps. 11 and 12, pp. 176–259.

Kerker, M.

M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 3, p. 33.

Leviatan, Y.

Y. Leviatan, J. Appl. Phys. 60, 1577 (1986).
[CrossRef]

Lewis, A.

A. Lewis, K. Lieberman, Nature (London) 354, 214 (1991).
[CrossRef]

Lieberman, K.

A. Lewis, K. Lieberman, Nature (London) 354, 214 (1991).
[CrossRef]

Ljungberg, K.

H. M. Hertz, L. Malmqvist, L. Rosengren, K. Ljungberg, “Optically trapped nonlinear particles as probes for scanning near field optical microscopy,”Ultramicroscopy (to be published).

Malmqvist, L.

L. Malmqvist, H. M. Hertz, Opt. Commun. 94, 19 (1992).
[CrossRef]

H. M. Hertz, L. Malmqvist, L. Rosengren, K. Ljungberg, “Optically trapped nonlinear particles as probes for scanning near field optical microscopy,”Ultramicroscopy (to be published).

Pashley, R. M.

W. A. Ducker, T. J. Senden, R. M. Pashley, Nature (London) 353, 239 (1991).
[CrossRef]

Pohl, D. W.

U. Ch. Fischer, D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989).
[CrossRef] [PubMed]

D. W. Pohl, in Advances in Optical and Electron Microscopy, C. J. R. Sheppard, T. Mulvey, eds. (Academic, London, 1991), Vol. 12, pp. 243–312.

Rosengren, L.

H. M. Hertz, L. Malmqvist, L. Rosengren, K. Ljungberg, “Optically trapped nonlinear particles as probes for scanning near field optical microscopy,”Ultramicroscopy (to be published).

Sato, S.

S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
[CrossRef]

Senden, T. J.

W. A. Ducker, T. J. Senden, R. M. Pashley, Nature (London) 353, 239 (1991).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

Wiener, J. S.

E. Betzig, P. L. Finn, J. S. Wiener, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12, p. 513.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12, p. 513.

Appl. Phys. Lett. (1)

E. Betzig, P. L. Finn, J. S. Wiener, Appl. Phys. Lett. 60, 2484 (1992).
[CrossRef]

Electron. Lett. (1)

S. Sato, H. Inaba, Electron. Lett. 28, 286 (1992).
[CrossRef]

J. Appl. Phys. (1)

Y. Leviatan, J. Appl. Phys. 60, 1577 (1986).
[CrossRef]

Nature (2)

A. Lewis, K. Lieberman, Nature (London) 354, 214 (1991).
[CrossRef]

W. A. Ducker, T. J. Senden, R. M. Pashley, Nature (London) 353, 239 (1991).
[CrossRef]

Opt. Commun. (1)

L. Malmqvist, H. M. Hertz, Opt. Commun. 94, 19 (1992).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

U. Ch. Fischer, D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

Other (6)

D. W. Pohl, in Advances in Optical and Electron Microscopy, C. J. R. Sheppard, T. Mulvey, eds. (Academic, London, 1991), Vol. 12, pp. 243–312.

J. Israelachvili, Intermolecular and Surface Forces (Academic, San Diego, Calif., 1992), Chaps. 11 and 12, pp. 176–259.

S. M. Block, in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley, New York, 1990), pp. 375–402.

M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 3, p. 33.

H. M. Hertz, L. Malmqvist, L. Rosengren, K. Ljungberg, “Optically trapped nonlinear particles as probes for scanning near field optical microscopy,”Ultramicroscopy (to be published).

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12, p. 513.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for two-color TPOM.

Fig. 2
Fig. 2

Image of a dyed photoresist test object.

Fig. 3
Fig. 3

One-dimensional scan over an etched silicon edge.

Metrics