Abstract

Infrared light pulses as short as 70 fs that are nearly bandwidth limited are obtained in a simple double-pass optical parametric generator with a single β-barium borate nonlinear crystal. Tunability in the 1.2–1.3-μm range is demonstrated with sub-100-fs pulse duration, microjoule pulse energy, and 1-kHz repetition rate.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, R. Righini, J. Opt. Soc. Am. B 10, 2222 (1993).
    [CrossRef]
  2. P. E. Powers, R. J. Ellingson, W. S. Pelouch, C. L. Tang, J. Opt. Soc. Am. B 10, 2162 (1993).
    [CrossRef]
  3. W. Joosen, H. J. Bakker, L. D. Noordam, H. G. Muller, H. B. van Linden van der Heuvell, J. Opt. Soc. Am. B 8, 2537 (1991).
    [CrossRef]
  4. W. Joosen, P. Agostini, G. Petite, J. P. Chambaret, A. Antonetti, Opt. Lett. 17, 133 (1992).
    [CrossRef] [PubMed]
  5. G. P. Banfi, P. Di Trapani, R. Danielius, A. Piskarskas, R. Righini, I. Sa’nta, Opt. Lett. 18, 1547 (1993).
    [CrossRef] [PubMed]
  6. G. P. Banfi, R. Danielius, A. Piskarskas, P. Di Trapani, P. Foggi, R. Righini, Opt. Lett. 18, 1633 (1993).
    [CrossRef] [PubMed]
  7. P. C. M. Planken, H. J. Bakker, L. Kuipers, A. Lagendijk, J. Opt. Soc. Am. B 7, 2150 (1990).
    [CrossRef]
  8. T. R. Zhang, H. R. Choo, M. C. Downer, Appl. Opt. 29, 3927 (1990).
    [CrossRef] [PubMed]
  9. S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
    [CrossRef]
  10. R. Laenen, H. Graener, A. Laubereau, Opt. Lett. 15, 971 (1990).
    [CrossRef] [PubMed]
  11. V. Petrov, F. Seifert, F. Noack, “High-repetition-rate traveling-wave optical parametric generator producing nearly bandwidth-limited 50-fs infrared light pulses,” Appl. Phys. Lett. (to be published).
  12. J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, Opt. Lett. 18, 2035 (1993).
    [CrossRef] [PubMed]

1993

1992

1991

1990

1968

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Agostini, P.

Akhmanov, S. A.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Antonetti, A.

Bakker, H. J.

Banfi, G. P.

Chambaret, J. P.

Chirkin, A. S.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Choo, H. R.

Danielius, R.

Di Trapani, P.

Downer, M. C.

Drabovich, K. N.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Ellingson, R. J.

Foggi, P.

Graener, H.

Joosen, W.

Khokhlov, R. V.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Kittelmann, O.

Korn, G.

Kovrigin, A. I.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Kuipers, L.

Laenen, R.

Lagendijk, A.

Laubereau, A.

Muller, H. G.

Noack, F.

J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, Opt. Lett. 18, 2035 (1993).
[CrossRef] [PubMed]

V. Petrov, F. Seifert, F. Noack, “High-repetition-rate traveling-wave optical parametric generator producing nearly bandwidth-limited 50-fs infrared light pulses,” Appl. Phys. Lett. (to be published).

Noordam, L. D.

Pelouch, W. S.

Petite, G.

Petrov, V.

V. Petrov, F. Seifert, F. Noack, “High-repetition-rate traveling-wave optical parametric generator producing nearly bandwidth-limited 50-fs infrared light pulses,” Appl. Phys. Lett. (to be published).

Piskarskas, A.

Planken, P. C. M.

Powers, P. E.

Righini, R.

Ringling, J.

Sa’nta, I.

Seifert, F.

V. Petrov, F. Seifert, F. Noack, “High-repetition-rate traveling-wave optical parametric generator producing nearly bandwidth-limited 50-fs infrared light pulses,” Appl. Phys. Lett. (to be published).

Squier, J.

Stabinis, A.

Sukhorukov, A. P.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

Tang, C. L.

van Linden van der Heuvell, H. B.

Zhang, T. R.

Appl. Opt.

IEEE J. Quantum Electron.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 598 (1968).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Other

V. Petrov, F. Seifert, F. Noack, “High-repetition-rate traveling-wave optical parametric generator producing nearly bandwidth-limited 50-fs infrared light pulses,” Appl. Phys. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. DM’s, dichroic mirrors with high reflectivity near 800 nm and high transmission above 950 nm; OMA, optical multichannel analyzer. The telescope consists of a 50-cm focusing lens and a −10-cm collimating lens mounted on a translation stage.

Fig. 2
Fig. 2

Pulse spectra demonstrating the achieved wavelength tunability of the signal pulse at a fixed wavelength of the pump pulse (805 nm). The spectral widths (FWHM) are 19 nm [curve (a)], 33 nm [curve (b)], and 50 nm [curve (c)]. The corresponding measured pulse durations (FWHM), assuming a sech2 shape, are 95, 84, and 78 fs, resulting in pulse duration–spectral bandwidth products of 0.37, 0.53, and 0.7, respectively. The pump-pulse duration is 175 fs.

Fig. 3
Fig. 3

Autocorrelation trace of the shortest pulses obtained. The 109-fs correlation width corresponds to a 70-fs pulse duration (FWHM), assuming a sech2 shape. The wavelength is 1270 nm, and the pulse duration–bandwidth product is 0.5.

Fig. 4
Fig. 4

GVM between the signal and the pump, ΔS = VS−1VP−1, and between the idler and the pump, ΔI = VI−1VP−1, in BBO. The pump wavelength is 805 nm

Metrics