Abstract

Femtosecond pump–probe experiments performed on squaraines demonstrate strong couplings between the first excited state and high-lying two-photon states. The experimental data agree well with our earlier quantum many-electron calculations based on multiple-excited configuration interactions. We show that high-lying two-photon states in squaraines are critically important to understanding the observed third-order optical properties and that two-level models are inadequate even for molecules with negative third-order optical susceptibilities.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Mater. Res. Soc. Symp. Proc. 247, 73 (1992).
    [CrossRef]
  2. C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quantum Chem. 43, 27 (1992).
    [CrossRef]
  3. R. F. Shi, Q. L. Zhou, A. F. Garito, in Quantum Electronics and Laser Science, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 58.
  4. Q. L. Zhou, R. F. Shi, O. Zamani-Khamiri, A. F. Garito, Nonlinear Opt. 6, 145 (1993).
  5. C. T. Chen, S. R. Marder, L. T. Cheng, J. Chem. Soc. D 1994, 259 (1994).
  6. R. W. Bigelow, H. Freund, Chem. Phys. 107, 159 (1986).
    [CrossRef]
  7. J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, Phys. Rev. B 38, 1573 (1988).
    [CrossRef]

1994 (1)

C. T. Chen, S. R. Marder, L. T. Cheng, J. Chem. Soc. D 1994, 259 (1994).

1993 (1)

Q. L. Zhou, R. F. Shi, O. Zamani-Khamiri, A. F. Garito, Nonlinear Opt. 6, 145 (1993).

1992 (2)

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Mater. Res. Soc. Symp. Proc. 247, 73 (1992).
[CrossRef]

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quantum Chem. 43, 27 (1992).
[CrossRef]

1988 (1)

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, Phys. Rev. B 38, 1573 (1988).
[CrossRef]

1986 (1)

R. W. Bigelow, H. Freund, Chem. Phys. 107, 159 (1986).
[CrossRef]

Bigelow, R. W.

R. W. Bigelow, H. Freund, Chem. Phys. 107, 159 (1986).
[CrossRef]

Chen, C. T.

C. T. Chen, S. R. Marder, L. T. Cheng, J. Chem. Soc. D 1994, 259 (1994).

Cheng, L. T.

C. T. Chen, S. R. Marder, L. T. Cheng, J. Chem. Soc. D 1994, 259 (1994).

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Mater. Res. Soc. Symp. Proc. 247, 73 (1992).
[CrossRef]

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quantum Chem. 43, 27 (1992).
[CrossRef]

Dirk, C. W.

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Mater. Res. Soc. Symp. Proc. 247, 73 (1992).
[CrossRef]

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quantum Chem. 43, 27 (1992).
[CrossRef]

Freund, H.

R. W. Bigelow, H. Freund, Chem. Phys. 107, 159 (1986).
[CrossRef]

Garito, A. F.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamiri, A. F. Garito, Nonlinear Opt. 6, 145 (1993).

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, Phys. Rev. B 38, 1573 (1988).
[CrossRef]

R. F. Shi, Q. L. Zhou, A. F. Garito, in Quantum Electronics and Laser Science, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 58.

Heflin, J. R.

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, Phys. Rev. B 38, 1573 (1988).
[CrossRef]

Kuzyk, M. G.

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Mater. Res. Soc. Symp. Proc. 247, 73 (1992).
[CrossRef]

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quantum Chem. 43, 27 (1992).
[CrossRef]

Marder, S. R.

C. T. Chen, S. R. Marder, L. T. Cheng, J. Chem. Soc. D 1994, 259 (1994).

Shi, R. F.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamiri, A. F. Garito, Nonlinear Opt. 6, 145 (1993).

R. F. Shi, Q. L. Zhou, A. F. Garito, in Quantum Electronics and Laser Science, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 58.

Wong, K. Y.

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, Phys. Rev. B 38, 1573 (1988).
[CrossRef]

Zamani-Khamiri, O.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamiri, A. F. Garito, Nonlinear Opt. 6, 145 (1993).

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, Phys. Rev. B 38, 1573 (1988).
[CrossRef]

Zhou, Q. L.

Q. L. Zhou, R. F. Shi, O. Zamani-Khamiri, A. F. Garito, Nonlinear Opt. 6, 145 (1993).

R. F. Shi, Q. L. Zhou, A. F. Garito, in Quantum Electronics and Laser Science, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 58.

Chem. Phys. (1)

R. W. Bigelow, H. Freund, Chem. Phys. 107, 159 (1986).
[CrossRef]

Int. J. Quantum Chem. (1)

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Int. J. Quantum Chem. 43, 27 (1992).
[CrossRef]

J. Chem. Soc. D (1)

C. T. Chen, S. R. Marder, L. T. Cheng, J. Chem. Soc. D 1994, 259 (1994).

Mater. Res. Soc. Symp. Proc. (1)

C. W. Dirk, L. T. Cheng, M. G. Kuzyk, Mater. Res. Soc. Symp. Proc. 247, 73 (1992).
[CrossRef]

Nonlinear Opt. (1)

Q. L. Zhou, R. F. Shi, O. Zamani-Khamiri, A. F. Garito, Nonlinear Opt. 6, 145 (1993).

Phys. Rev. B (1)

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, Phys. Rev. B 38, 1573 (1988).
[CrossRef]

Other (1)

R. F. Shi, Q. L. Zhou, A. F. Garito, in Quantum Electronics and Laser Science, Vol. 3 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ground-state linear absorption spectrum of squaraine in dichloromethane. Inset: Bis[4-(N-ethyl-N-octadecylamino)-2-hydroxylphenyl] squarine molecular structure. X = OH, R1 = C2H5, and R2 = C18H37.

Fig. 2
Fig. 2

Femtosecond pump–probe experimental layout. The amplified CPM beam is split into a 100-fs pump with an intensity of 100 GW/cm2 and a continuum probe beam with an adjustable delay with respect to the pump. PMT, photomultiplier tube.

Fig. 3
Fig. 3

Excited-state differential transmission spectrum of squaraine in dichloromethane. The strong excited-state absorption peak at 476 nm corresponds to a molar extinction coefficient of 5.5 × 104 M−1 cm−1.

Fig. 4
Fig. 4

Comparison of excited-state molar extinction coefficients of squaraine. The solid curve is generated from the theoretical calculation, and the dotted curve is generated from experimental data.

Tables (1)

Tables Icon

Table 1 Calculated Real and Imaginary Parts of γijkl(−2ω; ω, ω, 0) (×10−36 esu) for the Squaraine (Fig. 1 inset) at ħω = 0.65 eV

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ɛ 1 ( λ ) = log [ Δ ( λ ) + 1 ] - c l ρ 1 + ɛ 0 ( λ ) ,
γ ( - 2 ω ; ω , ω , 0 ) = 1 5 [ i γ i i i i + 1 3 i j ( γ i i j j + 2 γ i j j i ) ] .

Metrics